open5gs/lib/core/ogs-hash.c

425 lines
11 KiB
C

/* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* Copyright (C) 2019-2020 by Sukchan Lee <acetcom@gmail.com>
*
* This file is part of Open5GS.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "ogs-core.h"
typedef struct ogs_hash_entry_t ogs_hash_entry_t;
struct ogs_hash_entry_t {
ogs_hash_entry_t *next;
unsigned int hash;
const void *key;
int klen;
const void *val;
};
struct ogs_hash_index_t {
ogs_hash_t *ht;
ogs_hash_entry_t *this, *next;
unsigned int index;
};
struct ogs_hash_t {
ogs_hash_entry_t **array;
ogs_hash_index_t iterator; /* For ogs_hash_first(NULL, ...) */
unsigned int count, max, seed;
ogs_hashfunc_t hash_func;
ogs_hash_entry_t *free; /* List of recycled entries */
};
#define INITIAL_MAX 15 /* tunable == 2^n - 1 */
static ogs_hash_entry_t **alloc_array(ogs_hash_t *ht, unsigned int max)
{
ogs_hash_entry_t **ptr = ogs_calloc(1, sizeof(*ht->array) * (max + 1));
ogs_assert(ptr);
return ptr;
}
ogs_hash_t *ogs_hash_make(void)
{
ogs_hash_t *ht;
ogs_time_t now = ogs_get_monotonic_time();
ht = ogs_malloc(sizeof(ogs_hash_t));
if (!ht) {
ogs_error("ogs_malloc() failed");
return NULL;
}
ht->free = NULL;
ht->count = 0;
ht->max = INITIAL_MAX;
ht->seed = (unsigned int)((now >> 32) ^ now ^
(uintptr_t)ht ^ (uintptr_t)&now) - 1;
ht->array = alloc_array(ht, ht->max);
ht->hash_func = NULL;
return ht;
}
ogs_hash_t *ogs_hash_make_custom(ogs_hashfunc_t hash_func)
{
ogs_hash_t *ht = ogs_hash_make();
if (!ht) {
ogs_error("ogs_hash_make() failed");
return NULL;
}
ht->hash_func = hash_func;
return ht;
}
void ogs_hash_destroy(ogs_hash_t *ht)
{
ogs_hash_entry_t *he = NULL, *next_he = NULL;
ogs_assert(ht);
ogs_assert(ht->array);
ogs_hash_clear(ht);
he = ht->free;
while(he) {
next_he = he->next;
ogs_free(he);
he = next_he;
}
ogs_free(ht->array);
ogs_free(ht);
}
ogs_hash_index_t *ogs_hash_next(ogs_hash_index_t *hi)
{
ogs_assert(hi);
hi->this = hi->next;
while (!hi->this) {
if (hi->index > hi->ht->max)
return NULL;
hi->this = hi->ht->array[hi->index++];
}
hi->next = hi->this->next;
return hi;
}
ogs_hash_index_t *ogs_hash_first(ogs_hash_t *ht)
{
ogs_hash_index_t *hi;
ogs_assert(ht);
hi = &ht->iterator;
hi->ht = ht;
hi->index = 0;
hi->this = NULL;
hi->next = NULL;
return ogs_hash_next(hi);
}
void ogs_hash_this(ogs_hash_index_t *hi,
const void **key, int *klen, void **val)
{
ogs_assert(hi);
if (key) *key = hi->this->key;
if (klen) *klen = hi->this->klen;
if (val) *val = (void *)hi->this->val;
}
const void *ogs_hash_this_key(ogs_hash_index_t *hi)
{
const void *key;
ogs_hash_this(hi, &key, NULL, NULL);
return key;
}
int ogs_hash_this_key_len(ogs_hash_index_t *hi)
{
int klen;
ogs_hash_this(hi, NULL, &klen, NULL);
return klen;
}
void *ogs_hash_this_val(ogs_hash_index_t *hi)
{
void *val;
ogs_hash_this(hi, NULL, NULL, &val);
return val;
}
static void expand_array(ogs_hash_t *ht)
{
ogs_hash_index_t *hi;
ogs_hash_entry_t **new_array;
unsigned int new_max;
new_max = ht->max * 2 + 1;
new_array = alloc_array(ht, new_max);
for (hi = ogs_hash_first(ht); hi; hi = ogs_hash_next(hi)) {
unsigned int i = hi->this->hash & new_max;
hi->this->next = new_array[i];
new_array[i] = hi->this;
}
ogs_free(ht->array);
ht->array = new_array;
ht->max = new_max;
}
static unsigned int hashfunc_default(
const char *char_key, int *klen, unsigned int hash)
{
const unsigned char *key = (const unsigned char *)char_key;
const unsigned char *p;
int i;
/*
* This is the popular `times 33' hash algorithm which is used by
* perl and also appears in Berkeley DB. This is one of the best
* known hash functions for strings because it is both computed
* very fast and distributes very well.
*
* The originator may be Dan Bernstein but the code in Berkeley DB
* cites Chris Torek as the source. The best citation I have found
* is "Chris Torek, Hash function for text in C, Usenet message
* <27038@mimsy.umd.edu> in comp.lang.c , October, 1990." in Rich
* Salz's USENIX 1992 paper about INN which can be found at
* <http://citeseer.nj.nec.com/salz92internetnews.html>.
*
* The magic of number 33, i.e. why it works better than many other
* constants, prime or not, has never been adequately explained by
* anyone. So I try an explanation: if one experimentally tests all
* multipliers between 1 and 256 (as I did while writing a low-level
* data structure library some time ago) one detects that even
* numbers are not useable at all. The remaining 128 odd numbers
* (except for the number 1) work more or less all equally well.
* They all distribute in an acceptable way and this way fill a hash
* table with an average percent of approx. 86%.
*
* If one compares the chi^2 values of the variants (see
* Bob Jenkins ``Hashing Frequently Asked Questions'' at
* http://burtleburtle.net/bob/hash/hashfaq.html for a description
* of chi^2), the number 33 not even has the best value. But the
* number 33 and a few other equally good numbers like 17, 31, 63,
* 127 and 129 have nevertheless a great advantage to the remaining
* numbers in the large set of possible multipliers: their multiply
* operation can be replaced by a faster operation based on just one
* shift plus either a single addition or subtraction operation. And
* because a hash function has to both distribute good _and_ has to
* be very fast to compute, those few numbers should be preferred.
*
* -- Ralf S. Engelschall <rse@engelschall.com>
*/
if (*klen == OGS_HASH_KEY_STRING) {
for (p = key; *p; p++) {
hash = hash * 33 + *p;
}
*klen = p - key;
}
else {
for (p = key, i = *klen; i; i--, p++) {
hash = hash * 33 + *p;
}
}
return hash;
}
unsigned int ogs_hashfunc_default(const char *char_key, int *klen)
{
return hashfunc_default(char_key, klen, 0);
}
static ogs_hash_entry_t **find_entry(ogs_hash_t *ht,
const void *key, int klen, const void *val, const char *file_line)
{
ogs_hash_entry_t **hep, *he;
unsigned int hash;
if (ht->hash_func)
hash = ht->hash_func(key, &klen);
else
hash = hashfunc_default(key, &klen, ht->seed);
/* scan linked list */
for (hep = &ht->array[hash & ht->max], he = *hep;
he; hep = &he->next, he = *hep) {
if (he->hash == hash
&& he->klen == klen
&& memcmp(he->key, key, klen) == 0)
break;
}
if (he || !val)
return hep;
/* add a new entry for non-NULL values */
if ((he = ht->free) != NULL)
ht->free = he->next;
else {
he = ogs_malloc(sizeof(*he));
ogs_assert(he);
}
he->next = NULL;
he->hash = hash;
he->key = key;
he->klen = klen;
he->val = val;
*hep = he;
ht->count++;
return hep;
}
void *ogs_hash_get_debug(ogs_hash_t *ht,
const void *key, int klen, const char *file_line)
{
ogs_hash_entry_t *he;
ogs_assert(ht);
ogs_assert(key);
ogs_assert(klen);
he = *find_entry(ht, key, klen, NULL, file_line);
if (he)
return (void *)he->val;
else
return NULL;
}
void ogs_hash_set_debug(ogs_hash_t *ht,
const void *key, int klen, const void *val, const char *file_line)
{
ogs_hash_entry_t **hep;
ogs_assert(ht);
ogs_assert(key);
ogs_assert(klen);
hep = find_entry(ht, key, klen, val, file_line);
if (*hep) {
if (!val) {
/* delete entry */
ogs_hash_entry_t *old = *hep;
*hep = (*hep)->next;
old->next = ht->free;
ht->free = old;
--ht->count;
} else {
/* replace entry */
(*hep)->val = val;
/* check that the collision rate isn't too high */
if (ht->count > ht->max) {
expand_array(ht);
}
}
}
/* else key not present and val==NULL */
}
void *ogs_hash_get_or_set_debug(ogs_hash_t *ht,
const void *key, int klen, const void *val, const char *file_line)
{
ogs_hash_entry_t **hep;
ogs_assert(ht);
ogs_assert(key);
ogs_assert(klen);
hep = find_entry(ht, key, klen, val, file_line);
if (*hep) {
val = (*hep)->val;
/* check that the collision rate isn't too high */
if (ht->count > ht->max) {
expand_array(ht);
}
return (void *)val;
}
/* else key not present and val==NULL */
return NULL;
}
unsigned int ogs_hash_count(ogs_hash_t *ht)
{
ogs_assert(ht);
return ht->count;
}
void ogs_hash_clear(ogs_hash_t *ht)
{
ogs_hash_index_t *hi;
ogs_assert(ht);
for (hi = ogs_hash_first(ht); hi; hi = ogs_hash_next(hi))
ogs_hash_set(ht, hi->this->key, hi->this->klen, NULL);
}
/* This is basically the following...
* for every element in hash table {
* comp elemeny.key, element.value
* }
*
* Like with table_do, the comp callback is called for each and every
* element of the hash table.
*/
int ogs_hash_do(ogs_hash_do_callback_fn_t *comp,
void *rec, const ogs_hash_t *ht)
{
ogs_hash_index_t hix;
ogs_hash_index_t *hi;
int rv, dorv = 1;
hix.ht = (ogs_hash_t *)ht;
hix.index = 0;
hix.this = NULL;
hix.next = NULL;
if ((hi = ogs_hash_next(&hix))) {
/* Scan the entire table */
do {
rv = (*comp)(rec, hi->this->key, hi->this->klen, hi->this->val);
} while (rv && (hi = ogs_hash_next(hi)));
if (rv == 0) {
dorv = 0;
}
}
return dorv;
}