/* Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* * Copyright (C) 2019-2020 by Sukchan Lee * * This file is part of Open5GS. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "ogs-core.h" typedef struct ogs_hash_entry_t ogs_hash_entry_t; struct ogs_hash_entry_t { ogs_hash_entry_t *next; unsigned int hash; const void *key; int klen; const void *val; }; struct ogs_hash_index_t { ogs_hash_t *ht; ogs_hash_entry_t *this, *next; unsigned int index; }; struct ogs_hash_t { ogs_hash_entry_t **array; ogs_hash_index_t iterator; /* For ogs_hash_first(NULL, ...) */ unsigned int count, max, seed; ogs_hashfunc_t hash_func; ogs_hash_entry_t *free; /* List of recycled entries */ }; #define INITIAL_MAX 15 /* tunable == 2^n - 1 */ static ogs_hash_entry_t **alloc_array(ogs_hash_t *ht, unsigned int max) { ogs_hash_entry_t **ptr = ogs_calloc(1, sizeof(*ht->array) * (max + 1)); ogs_assert(ptr); return ptr; } ogs_hash_t *ogs_hash_make(void) { ogs_hash_t *ht; ogs_time_t now = ogs_get_monotonic_time(); ht = ogs_malloc(sizeof(ogs_hash_t)); if (!ht) { ogs_error("ogs_malloc() failed"); return NULL; } ht->free = NULL; ht->count = 0; ht->max = INITIAL_MAX; ht->seed = (unsigned int)((now >> 32) ^ now ^ (uintptr_t)ht ^ (uintptr_t)&now) - 1; ht->array = alloc_array(ht, ht->max); ht->hash_func = NULL; return ht; } ogs_hash_t *ogs_hash_make_custom(ogs_hashfunc_t hash_func) { ogs_hash_t *ht = ogs_hash_make(); if (!ht) { ogs_error("ogs_hash_make() failed"); return NULL; } ht->hash_func = hash_func; return ht; } void ogs_hash_destroy(ogs_hash_t *ht) { ogs_hash_entry_t *he = NULL, *next_he = NULL; ogs_assert(ht); ogs_assert(ht->array); ogs_hash_clear(ht); he = ht->free; while(he) { next_he = he->next; ogs_free(he); he = next_he; } ogs_free(ht->array); ogs_free(ht); } ogs_hash_index_t *ogs_hash_next(ogs_hash_index_t *hi) { ogs_assert(hi); hi->this = hi->next; while (!hi->this) { if (hi->index > hi->ht->max) return NULL; hi->this = hi->ht->array[hi->index++]; } hi->next = hi->this->next; return hi; } ogs_hash_index_t *ogs_hash_first(ogs_hash_t *ht) { ogs_hash_index_t *hi; ogs_assert(ht); hi = &ht->iterator; hi->ht = ht; hi->index = 0; hi->this = NULL; hi->next = NULL; return ogs_hash_next(hi); } void ogs_hash_this(ogs_hash_index_t *hi, const void **key, int *klen, void **val) { ogs_assert(hi); if (key) *key = hi->this->key; if (klen) *klen = hi->this->klen; if (val) *val = (void *)hi->this->val; } const void *ogs_hash_this_key(ogs_hash_index_t *hi) { const void *key; ogs_hash_this(hi, &key, NULL, NULL); return key; } int ogs_hash_this_key_len(ogs_hash_index_t *hi) { int klen; ogs_hash_this(hi, NULL, &klen, NULL); return klen; } void *ogs_hash_this_val(ogs_hash_index_t *hi) { void *val; ogs_hash_this(hi, NULL, NULL, &val); return val; } static void expand_array(ogs_hash_t *ht) { ogs_hash_index_t *hi; ogs_hash_entry_t **new_array; unsigned int new_max; new_max = ht->max * 2 + 1; new_array = alloc_array(ht, new_max); for (hi = ogs_hash_first(ht); hi; hi = ogs_hash_next(hi)) { unsigned int i = hi->this->hash & new_max; hi->this->next = new_array[i]; new_array[i] = hi->this; } ogs_free(ht->array); ht->array = new_array; ht->max = new_max; } static unsigned int hashfunc_default( const char *char_key, int *klen, unsigned int hash) { const unsigned char *key = (const unsigned char *)char_key; const unsigned char *p; int i; /* * This is the popular `times 33' hash algorithm which is used by * perl and also appears in Berkeley DB. This is one of the best * known hash functions for strings because it is both computed * very fast and distributes very well. * * The originator may be Dan Bernstein but the code in Berkeley DB * cites Chris Torek as the source. The best citation I have found * is "Chris Torek, Hash function for text in C, Usenet message * <27038@mimsy.umd.edu> in comp.lang.c , October, 1990." in Rich * Salz's USENIX 1992 paper about INN which can be found at * . * * The magic of number 33, i.e. why it works better than many other * constants, prime or not, has never been adequately explained by * anyone. So I try an explanation: if one experimentally tests all * multipliers between 1 and 256 (as I did while writing a low-level * data structure library some time ago) one detects that even * numbers are not useable at all. The remaining 128 odd numbers * (except for the number 1) work more or less all equally well. * They all distribute in an acceptable way and this way fill a hash * table with an average percent of approx. 86%. * * If one compares the chi^2 values of the variants (see * Bob Jenkins ``Hashing Frequently Asked Questions'' at * http://burtleburtle.net/bob/hash/hashfaq.html for a description * of chi^2), the number 33 not even has the best value. But the * number 33 and a few other equally good numbers like 17, 31, 63, * 127 and 129 have nevertheless a great advantage to the remaining * numbers in the large set of possible multipliers: their multiply * operation can be replaced by a faster operation based on just one * shift plus either a single addition or subtraction operation. And * because a hash function has to both distribute good _and_ has to * be very fast to compute, those few numbers should be preferred. * * -- Ralf S. Engelschall */ if (*klen == OGS_HASH_KEY_STRING) { for (p = key; *p; p++) { hash = hash * 33 + *p; } *klen = p - key; } else { for (p = key, i = *klen; i; i--, p++) { hash = hash * 33 + *p; } } return hash; } unsigned int ogs_hashfunc_default(const char *char_key, int *klen) { return hashfunc_default(char_key, klen, 0); } static ogs_hash_entry_t **find_entry(ogs_hash_t *ht, const void *key, int klen, const void *val, const char *file_line) { ogs_hash_entry_t **hep, *he; unsigned int hash; if (ht->hash_func) hash = ht->hash_func(key, &klen); else hash = hashfunc_default(key, &klen, ht->seed); /* scan linked list */ for (hep = &ht->array[hash & ht->max], he = *hep; he; hep = &he->next, he = *hep) { if (he->hash == hash && he->klen == klen && memcmp(he->key, key, klen) == 0) break; } if (he || !val) return hep; /* add a new entry for non-NULL values */ if ((he = ht->free) != NULL) ht->free = he->next; else { he = ogs_malloc(sizeof(*he)); ogs_assert(he); } he->next = NULL; he->hash = hash; he->key = key; he->klen = klen; he->val = val; *hep = he; ht->count++; return hep; } void *ogs_hash_get_debug(ogs_hash_t *ht, const void *key, int klen, const char *file_line) { ogs_hash_entry_t *he; ogs_assert(ht); ogs_assert(key); ogs_assert(klen); he = *find_entry(ht, key, klen, NULL, file_line); if (he) return (void *)he->val; else return NULL; } void ogs_hash_set_debug(ogs_hash_t *ht, const void *key, int klen, const void *val, const char *file_line) { ogs_hash_entry_t **hep; ogs_assert(ht); ogs_assert(key); ogs_assert(klen); hep = find_entry(ht, key, klen, val, file_line); if (*hep) { if (!val) { /* delete entry */ ogs_hash_entry_t *old = *hep; *hep = (*hep)->next; old->next = ht->free; ht->free = old; --ht->count; } else { /* replace entry */ (*hep)->val = val; /* check that the collision rate isn't too high */ if (ht->count > ht->max) { expand_array(ht); } } } /* else key not present and val==NULL */ } void *ogs_hash_get_or_set_debug(ogs_hash_t *ht, const void *key, int klen, const void *val, const char *file_line) { ogs_hash_entry_t **hep; ogs_assert(ht); ogs_assert(key); ogs_assert(klen); hep = find_entry(ht, key, klen, val, file_line); if (*hep) { val = (*hep)->val; /* check that the collision rate isn't too high */ if (ht->count > ht->max) { expand_array(ht); } return (void *)val; } /* else key not present and val==NULL */ return NULL; } unsigned int ogs_hash_count(ogs_hash_t *ht) { ogs_assert(ht); return ht->count; } void ogs_hash_clear(ogs_hash_t *ht) { ogs_hash_index_t *hi; ogs_assert(ht); for (hi = ogs_hash_first(ht); hi; hi = ogs_hash_next(hi)) ogs_hash_set(ht, hi->this->key, hi->this->klen, NULL); } /* This is basically the following... * for every element in hash table { * comp elemeny.key, element.value * } * * Like with table_do, the comp callback is called for each and every * element of the hash table. */ int ogs_hash_do(ogs_hash_do_callback_fn_t *comp, void *rec, const ogs_hash_t *ht) { ogs_hash_index_t hix; ogs_hash_index_t *hi; int rv, dorv = 1; hix.ht = (ogs_hash_t *)ht; hix.index = 0; hix.this = NULL; hix.next = NULL; if ((hi = ogs_hash_next(&hix))) { /* Scan the entire table */ do { rv = (*comp)(rec, hi->this->key, hi->this->klen, hi->this->val); } while (rv && (hi = ogs_hash_next(hi))); if (rv == 0) { dorv = 0; } } return dorv; }