open5gs/lib/crypt/ogs-sha1.c

432 lines
12 KiB
C

/*
* Copyright 2002-2020 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
/*
* Copyright (C) 2019-2020 by Sukchan Lee <acetcom@gmail.com>
*
* This file is part of Open5GS.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* sha1.c
*
* Copyright (C) 1998, 2009
* Paul E. Jones <paulej@packetizer.com>
* All Rights Reserved
*
*****************************************************************************
* $Id: sha1.c 12 2009-06-22 19:34:25Z paulej $
*****************************************************************************
*
* Description:
* This file implements the Secure Hashing Standard as defined
* in FIPS PUB 180-1 published April 17, 1995.
*
* The Secure Hashing Standard, which uses the Secure Hashing
* Algorithm (SHA), produces a 160-bit message digest for a
* given data stream. In theory, it is highly improbable that
* two messages will produce the same message digest. Therefore,
* this algorithm can serve as a means of providing a "fingerprint"
* for a message.
*
* Portability Issues:
* SHA-1 is defined in terms of 32-bit "words". This code was
* written with the expectation that the processor has at least
* a 32-bit machine word size. If the machine word size is larger,
* the code should still function properly. One caveat to that
* is that the input functions taking characters and character
* arrays assume that only 8 bits of information are stored in each
* character.
*
* Caveats:
* SHA-1 is designed to work with messages less than 2^64 bits
* long. Although SHA-1 allows a message digest to be generated for
* messages of any number of bits less than 2^64, this
* implementation only works with messages with a length that is a
* multiple of the size of an 8-bit character.
*
*/
#include "ogs-crypt.h"
/*
* Define the circular shift macro
*/
#define SHA1CircularShift(bits,word) \
((((word) << (bits)) & 0xFFFFFFFF) | \
((word) >> (32-(bits))))
/* Function prototypes */
static void SHA1ProcessMessageBlock(ogs_sha1_ctx *);
static void SHA1PadMessage(ogs_sha1_ctx *);
/*
* sha1_init
*
* Description:
* This function will initialize the ogs_sha1_ctx in preparation
* for computing a new message digest.
*
* Parameters:
* context: [in/out]
* The context to reset.
*
* Returns:
* Nothing.
*
* Comments:
*
*/
void ogs_sha1_init(ogs_sha1_ctx *ctx)
{
ctx->Length_Low = 0;
ctx->Length_High = 0;
ctx->Message_Block_Index = 0;
ctx->Message_Digest[0] = 0x67452301;
ctx->Message_Digest[1] = 0xEFCDAB89;
ctx->Message_Digest[2] = 0x98BADCFE;
ctx->Message_Digest[3] = 0x10325476;
ctx->Message_Digest[4] = 0xC3D2E1F0;
ctx->Computed = 0;
ctx->Corrupted = 0;
}
/*
* sha1_final
*
* Description:
* This function will return the 160-bit message digest into the
* Message_Digest array within the ogs_sha1_ctx provided
*
* Parameters:
* context: [in/out]
* The context to use to calculate the SHA-1 hash.
*
* Returns:
* 1 if successful, 0 if it failed.
*
* Comments:
*
*/
#if 0 /* modifed by anoveth */
void ogs_sha1_final(ogs_sha1_ctx *ctx)
#else
void ogs_sha1_final(ogs_sha1_ctx *ctx, uint8_t *digest)
#endif
{
#if 0 /* blocked by anoveth */
if (ctx->Corrupted)
{
return 0;
}
#endif
if (!ctx->Computed)
{
SHA1PadMessage(ctx);
ctx->Computed = 1;
}
#if 0 /* modified by anoveth */
return 1;
#else
{
#if OGS_BYTE_ORDER == OGS_BIG_ENDIAN
memcpy(digest, ctx->Message_Digest, OGS_SHA1_DIGEST_SIZE);
#else
#define ROTR(a) ((((unsigned)(a))>>8)|((a)<<24))
#define ROTL(a) (((a)<<8)|(((unsigned)(a))>>24))
#define SWAP32(a) (ROTL((a)&0xff00ff00)|ROTR((a)&0x00ff00ff))
uint32_t n[5];
n[0] = SWAP32(ctx->Message_Digest[0]);
n[1] = SWAP32(ctx->Message_Digest[1]);
n[2] = SWAP32(ctx->Message_Digest[2]);
n[3] = SWAP32(ctx->Message_Digest[3]);
n[4] = SWAP32(ctx->Message_Digest[4]);
memcpy(digest, n, OGS_SHA1_DIGEST_SIZE);
}
#endif
#endif
}
/*
* sha1_update
*
* Description:
* This function accepts an array of octets as the next portion of
* the message.
*
* Parameters:
* context: [in/out]
* The SHA-1 context to update
* message_array: [in]
* An array of characters representing the next portion of the
* message.
* length: [in]
* The length of the message in message_array
*
* Returns:
* Nothing.
*
* Comments:
*
*/
void ogs_sha1_update(ogs_sha1_ctx *ctx, const uint8_t *message_array,
uint32_t length)
{
if (!length)
{
return;
}
if (ctx->Computed || ctx->Corrupted)
{
ctx->Corrupted = 1;
return;
}
while(length-- && !ctx->Corrupted)
{
ctx->Message_Block[ctx->Message_Block_Index++] =
(*message_array & 0xFF);
ctx->Length_Low += 8;
/* Force it to 32 bits */
ctx->Length_Low &= 0xFFFFFFFF;
if (ctx->Length_Low == 0)
{
ctx->Length_High++;
/* Force it to 32 bits */
ctx->Length_High &= 0xFFFFFFFF;
if (ctx->Length_High == 0)
{
/* Message is too long */
ctx->Corrupted = 1;
}
}
if (ctx->Message_Block_Index == 64)
{
SHA1ProcessMessageBlock(ctx);
}
message_array++;
}
}
/*
* SHA1ProcessMessageBlock
*
* Description:
* This function will process the next 512 bits of the message
* stored in the Message_Block array.
*
* Parameters:
* None.
*
* Returns:
* Nothing.
*
* Comments:
* Many of the variable names in the SHAContext, especially the
* single character names, were used because those were the names
* used in the publication.
*
*
*/
static void SHA1ProcessMessageBlock(ogs_sha1_ctx *ctx)
{
const unsigned K[] = /* Constants defined in SHA-1 */
{
0x5A827999,
0x6ED9EBA1,
0x8F1BBCDC,
0xCA62C1D6
};
int t; /* Loop counter */
unsigned temp; /* Temporary word value */
unsigned W[80]; /* Word sequence */
unsigned A, B, C, D, E; /* Word buffers */
/*
* Initialize the first 16 words in the array W
*/
for(t = 0; t < 16; t++)
{
W[t] = ((unsigned) ctx->Message_Block[t * 4]) << 24;
W[t] |= ((unsigned) ctx->Message_Block[t * 4 + 1]) << 16;
W[t] |= ((unsigned) ctx->Message_Block[t * 4 + 2]) << 8;
W[t] |= ((unsigned) ctx->Message_Block[t * 4 + 3]);
}
for(t = 16; t < 80; t++)
{
W[t] = SHA1CircularShift(1,W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16]);
}
A = ctx->Message_Digest[0];
B = ctx->Message_Digest[1];
C = ctx->Message_Digest[2];
D = ctx->Message_Digest[3];
E = ctx->Message_Digest[4];
for(t = 0; t < 20; t++)
{
temp = SHA1CircularShift(5,A) +
((B & C) | ((~B) & D)) + E + W[t] + K[0];
temp &= 0xFFFFFFFF;
E = D;
D = C;
C = SHA1CircularShift(30,B);
B = A;
A = temp;
}
for(t = 20; t < 40; t++)
{
temp = SHA1CircularShift(5,A) + (B ^ C ^ D) + E + W[t] + K[1];
temp &= 0xFFFFFFFF;
E = D;
D = C;
C = SHA1CircularShift(30,B);
B = A;
A = temp;
}
for(t = 40; t < 60; t++)
{
temp = SHA1CircularShift(5,A) +
((B & C) | (B & D) | (C & D)) + E + W[t] + K[2];
temp &= 0xFFFFFFFF;
E = D;
D = C;
C = SHA1CircularShift(30,B);
B = A;
A = temp;
}
for(t = 60; t < 80; t++)
{
temp = SHA1CircularShift(5,A) + (B ^ C ^ D) + E + W[t] + K[3];
temp &= 0xFFFFFFFF;
E = D;
D = C;
C = SHA1CircularShift(30,B);
B = A;
A = temp;
}
ctx->Message_Digest[0] =
(ctx->Message_Digest[0] + A) & 0xFFFFFFFF;
ctx->Message_Digest[1] =
(ctx->Message_Digest[1] + B) & 0xFFFFFFFF;
ctx->Message_Digest[2] =
(ctx->Message_Digest[2] + C) & 0xFFFFFFFF;
ctx->Message_Digest[3] =
(ctx->Message_Digest[3] + D) & 0xFFFFFFFF;
ctx->Message_Digest[4] =
(ctx->Message_Digest[4] + E) & 0xFFFFFFFF;
ctx->Message_Block_Index = 0;
}
/*
* SHA1PadMessage
*
* Description:
* According to the standard, the message must be padded to an even
* 512 bits. The first padding bit must be a '1'. The last 64
* bits represent the length of the original message. All bits in
* between should be 0. This function will pad the message
* according to those rules by filling the Message_Block array
* accordingly. It will also call SHA1ProcessMessageBlock()
* appropriately. When it returns, it can be assumed that the
* message digest has been computed.
*
* Parameters:
* context: [in/out]
* The context to pad
*
* Returns:
* Nothing.
*
* Comments:
*
*/
static void SHA1PadMessage(ogs_sha1_ctx *ctx)
{
/*
* Check to see if the current message block is too small to hold
* the initial padding bits and length. If so, we will pad the
* block, process it, and then continue padding into a second
* block.
*/
if (ctx->Message_Block_Index > 55)
{
ctx->Message_Block[ctx->Message_Block_Index++] = 0x80;
while(ctx->Message_Block_Index < 64)
{
ctx->Message_Block[ctx->Message_Block_Index++] = 0;
}
SHA1ProcessMessageBlock(ctx);
while(ctx->Message_Block_Index < 56)
{
ctx->Message_Block[ctx->Message_Block_Index++] = 0;
}
}
else
{
ctx->Message_Block[ctx->Message_Block_Index++] = 0x80;
while(ctx->Message_Block_Index < 56)
{
ctx->Message_Block[ctx->Message_Block_Index++] = 0;
}
}
/*
* Store the message length as the last 8 octets
*/
ctx->Message_Block[56] = (ctx->Length_High >> 24) & 0xFF;
ctx->Message_Block[57] = (ctx->Length_High >> 16) & 0xFF;
ctx->Message_Block[58] = (ctx->Length_High >> 8) & 0xFF;
ctx->Message_Block[59] = (ctx->Length_High) & 0xFF;
ctx->Message_Block[60] = (ctx->Length_Low >> 24) & 0xFF;
ctx->Message_Block[61] = (ctx->Length_Low >> 16) & 0xFF;
ctx->Message_Block[62] = (ctx->Length_Low >> 8) & 0xFF;
ctx->Message_Block[63] = (ctx->Length_Low) & 0xFF;
SHA1ProcessMessageBlock(ctx);
}
void ogs_sha1(const uint8_t *message, uint32_t len, uint8_t *digest)
{
ogs_sha1_ctx ctx;
ogs_sha1_init(&ctx);
ogs_sha1_update(&ctx, message, len);
ogs_sha1_final(&ctx, digest);
}