You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
782 lines
18 KiB
782 lines
18 KiB
#include <linux/errno.h> |
|
#include <linux/kernel.h> |
|
#include <linux/mm.h> |
|
#include <linux/smp.h> |
|
#include <linux/prctl.h> |
|
#include <linux/slab.h> |
|
#include <linux/sched.h> |
|
#include <linux/module.h> |
|
#include <linux/pm.h> |
|
#include <linux/clockchips.h> |
|
#include <linux/random.h> |
|
#include <linux/user-return-notifier.h> |
|
#include <linux/dmi.h> |
|
#include <linux/utsname.h> |
|
#include <linux/stackprotector.h> |
|
#include <linux/tick.h> |
|
#include <linux/cpuidle.h> |
|
#include <trace/events/power.h> |
|
#include <linux/hw_breakpoint.h> |
|
#include <asm/cpu.h> |
|
#include <asm/apic.h> |
|
#include <asm/syscalls.h> |
|
#include <asm/idle.h> |
|
#include <asm/uaccess.h> |
|
#include <asm/i387.h> |
|
#include <asm/fpu-internal.h> |
|
#include <asm/debugreg.h> |
|
#include <asm/nmi.h> |
|
|
|
#ifdef CONFIG_X86_64 |
|
static DEFINE_PER_CPU(unsigned char, is_idle); |
|
static ATOMIC_NOTIFIER_HEAD(idle_notifier); |
|
|
|
void idle_notifier_register(struct notifier_block *n) |
|
{ |
|
atomic_notifier_chain_register(&idle_notifier, n); |
|
} |
|
EXPORT_SYMBOL_GPL(idle_notifier_register); |
|
|
|
void idle_notifier_unregister(struct notifier_block *n) |
|
{ |
|
atomic_notifier_chain_unregister(&idle_notifier, n); |
|
} |
|
EXPORT_SYMBOL_GPL(idle_notifier_unregister); |
|
#endif |
|
|
|
struct kmem_cache *task_xstate_cachep; |
|
EXPORT_SYMBOL_GPL(task_xstate_cachep); |
|
|
|
int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) |
|
{ |
|
int ret; |
|
|
|
*dst = *src; |
|
if (fpu_allocated(&src->thread.fpu)) { |
|
memset(&dst->thread.fpu, 0, sizeof(dst->thread.fpu)); |
|
ret = fpu_alloc(&dst->thread.fpu); |
|
if (ret) |
|
return ret; |
|
fpu_copy(&dst->thread.fpu, &src->thread.fpu); |
|
} |
|
return 0; |
|
} |
|
|
|
void free_thread_xstate(struct task_struct *tsk) |
|
{ |
|
fpu_free(&tsk->thread.fpu); |
|
} |
|
|
|
void free_thread_info(struct thread_info *ti) |
|
{ |
|
free_thread_xstate(ti->task); |
|
free_pages((unsigned long)ti, THREAD_ORDER); |
|
} |
|
|
|
void arch_task_cache_init(void) |
|
{ |
|
task_xstate_cachep = |
|
kmem_cache_create("task_xstate", xstate_size, |
|
__alignof__(union thread_xstate), |
|
SLAB_PANIC | SLAB_NOTRACK, NULL); |
|
} |
|
|
|
/* |
|
* Free current thread data structures etc.. |
|
*/ |
|
void exit_thread(void) |
|
{ |
|
struct task_struct *me = current; |
|
struct thread_struct *t = &me->thread; |
|
unsigned long *bp = t->io_bitmap_ptr; |
|
|
|
if (bp) { |
|
struct tss_struct *tss = &per_cpu(init_tss, get_cpu()); |
|
|
|
t->io_bitmap_ptr = NULL; |
|
clear_thread_flag(TIF_IO_BITMAP); |
|
/* |
|
* Careful, clear this in the TSS too: |
|
*/ |
|
memset(tss->io_bitmap, 0xff, t->io_bitmap_max); |
|
t->io_bitmap_max = 0; |
|
put_cpu(); |
|
kfree(bp); |
|
} |
|
} |
|
|
|
void show_regs(struct pt_regs *regs) |
|
{ |
|
show_registers(regs); |
|
show_trace(NULL, regs, (unsigned long *)kernel_stack_pointer(regs), 0); |
|
} |
|
|
|
void show_regs_common(void) |
|
{ |
|
const char *vendor, *product, *board; |
|
|
|
vendor = dmi_get_system_info(DMI_SYS_VENDOR); |
|
if (!vendor) |
|
vendor = ""; |
|
product = dmi_get_system_info(DMI_PRODUCT_NAME); |
|
if (!product) |
|
product = ""; |
|
|
|
/* Board Name is optional */ |
|
board = dmi_get_system_info(DMI_BOARD_NAME); |
|
|
|
printk(KERN_CONT "\n"); |
|
printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s", |
|
current->pid, current->comm, print_tainted(), |
|
init_utsname()->release, |
|
(int)strcspn(init_utsname()->version, " "), |
|
init_utsname()->version); |
|
printk(KERN_CONT " %s %s", vendor, product); |
|
if (board) |
|
printk(KERN_CONT "/%s", board); |
|
printk(KERN_CONT "\n"); |
|
} |
|
|
|
void flush_thread(void) |
|
{ |
|
struct task_struct *tsk = current; |
|
|
|
flush_ptrace_hw_breakpoint(tsk); |
|
memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array)); |
|
/* |
|
* Forget coprocessor state.. |
|
*/ |
|
tsk->fpu_counter = 0; |
|
clear_fpu(tsk); |
|
clear_used_math(); |
|
} |
|
|
|
static void hard_disable_TSC(void) |
|
{ |
|
write_cr4(read_cr4() | X86_CR4_TSD); |
|
} |
|
|
|
void disable_TSC(void) |
|
{ |
|
preempt_disable(); |
|
if (!test_and_set_thread_flag(TIF_NOTSC)) |
|
/* |
|
* Must flip the CPU state synchronously with |
|
* TIF_NOTSC in the current running context. |
|
*/ |
|
hard_disable_TSC(); |
|
preempt_enable(); |
|
} |
|
|
|
static void hard_enable_TSC(void) |
|
{ |
|
write_cr4(read_cr4() & ~X86_CR4_TSD); |
|
} |
|
|
|
static void enable_TSC(void) |
|
{ |
|
preempt_disable(); |
|
if (test_and_clear_thread_flag(TIF_NOTSC)) |
|
/* |
|
* Must flip the CPU state synchronously with |
|
* TIF_NOTSC in the current running context. |
|
*/ |
|
hard_enable_TSC(); |
|
preempt_enable(); |
|
} |
|
|
|
int get_tsc_mode(unsigned long adr) |
|
{ |
|
unsigned int val; |
|
|
|
if (test_thread_flag(TIF_NOTSC)) |
|
val = PR_TSC_SIGSEGV; |
|
else |
|
val = PR_TSC_ENABLE; |
|
|
|
return put_user(val, (unsigned int __user *)adr); |
|
} |
|
|
|
int set_tsc_mode(unsigned int val) |
|
{ |
|
if (val == PR_TSC_SIGSEGV) |
|
disable_TSC(); |
|
else if (val == PR_TSC_ENABLE) |
|
enable_TSC(); |
|
else |
|
return -EINVAL; |
|
|
|
return 0; |
|
} |
|
|
|
void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p, |
|
struct tss_struct *tss) |
|
{ |
|
struct thread_struct *prev, *next; |
|
|
|
prev = &prev_p->thread; |
|
next = &next_p->thread; |
|
|
|
if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^ |
|
test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) { |
|
unsigned long debugctl = get_debugctlmsr(); |
|
|
|
debugctl &= ~DEBUGCTLMSR_BTF; |
|
if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) |
|
debugctl |= DEBUGCTLMSR_BTF; |
|
|
|
update_debugctlmsr(debugctl); |
|
} |
|
|
|
if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^ |
|
test_tsk_thread_flag(next_p, TIF_NOTSC)) { |
|
/* prev and next are different */ |
|
if (test_tsk_thread_flag(next_p, TIF_NOTSC)) |
|
hard_disable_TSC(); |
|
else |
|
hard_enable_TSC(); |
|
} |
|
|
|
if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) { |
|
/* |
|
* Copy the relevant range of the IO bitmap. |
|
* Normally this is 128 bytes or less: |
|
*/ |
|
memcpy(tss->io_bitmap, next->io_bitmap_ptr, |
|
max(prev->io_bitmap_max, next->io_bitmap_max)); |
|
} else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) { |
|
/* |
|
* Clear any possible leftover bits: |
|
*/ |
|
memset(tss->io_bitmap, 0xff, prev->io_bitmap_max); |
|
} |
|
propagate_user_return_notify(prev_p, next_p); |
|
} |
|
|
|
int sys_fork(struct pt_regs *regs) |
|
{ |
|
return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL); |
|
} |
|
|
|
/* |
|
* This is trivial, and on the face of it looks like it |
|
* could equally well be done in user mode. |
|
* |
|
* Not so, for quite unobvious reasons - register pressure. |
|
* In user mode vfork() cannot have a stack frame, and if |
|
* done by calling the "clone()" system call directly, you |
|
* do not have enough call-clobbered registers to hold all |
|
* the information you need. |
|
*/ |
|
int sys_vfork(struct pt_regs *regs) |
|
{ |
|
return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0, |
|
NULL, NULL); |
|
} |
|
|
|
long |
|
sys_clone(unsigned long clone_flags, unsigned long newsp, |
|
void __user *parent_tid, void __user *child_tid, struct pt_regs *regs) |
|
{ |
|
if (!newsp) |
|
newsp = regs->sp; |
|
return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid); |
|
} |
|
|
|
/* |
|
* This gets run with %si containing the |
|
* function to call, and %di containing |
|
* the "args". |
|
*/ |
|
extern void kernel_thread_helper(void); |
|
|
|
/* |
|
* Create a kernel thread |
|
*/ |
|
int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) |
|
{ |
|
struct pt_regs regs; |
|
|
|
memset(®s, 0, sizeof(regs)); |
|
|
|
regs.si = (unsigned long) fn; |
|
regs.di = (unsigned long) arg; |
|
|
|
#ifdef CONFIG_X86_32 |
|
regs.ds = __USER_DS; |
|
regs.es = __USER_DS; |
|
regs.fs = __KERNEL_PERCPU; |
|
regs.gs = __KERNEL_STACK_CANARY; |
|
#else |
|
regs.ss = __KERNEL_DS; |
|
#endif |
|
|
|
regs.orig_ax = -1; |
|
regs.ip = (unsigned long) kernel_thread_helper; |
|
regs.cs = __KERNEL_CS | get_kernel_rpl(); |
|
regs.flags = X86_EFLAGS_IF | X86_EFLAGS_BIT1; |
|
|
|
/* Ok, create the new process.. */ |
|
return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, ®s, 0, NULL, NULL); |
|
} |
|
EXPORT_SYMBOL(kernel_thread); |
|
|
|
/* |
|
* sys_execve() executes a new program. |
|
*/ |
|
long sys_execve(const char __user *name, |
|
const char __user *const __user *argv, |
|
const char __user *const __user *envp, struct pt_regs *regs) |
|
{ |
|
long error; |
|
char *filename; |
|
|
|
filename = getname(name); |
|
error = PTR_ERR(filename); |
|
if (IS_ERR(filename)) |
|
return error; |
|
error = do_execve(filename, argv, envp, regs); |
|
|
|
#ifdef CONFIG_X86_32 |
|
if (error == 0) { |
|
/* Make sure we don't return using sysenter.. */ |
|
set_thread_flag(TIF_IRET); |
|
} |
|
#endif |
|
|
|
putname(filename); |
|
return error; |
|
} |
|
|
|
/* |
|
* Idle related variables and functions |
|
*/ |
|
unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE; |
|
EXPORT_SYMBOL(boot_option_idle_override); |
|
|
|
/* |
|
* Powermanagement idle function, if any.. |
|
*/ |
|
void (*pm_idle)(void); |
|
#ifdef CONFIG_APM_MODULE |
|
EXPORT_SYMBOL(pm_idle); |
|
#endif |
|
|
|
#ifdef CONFIG_X86_32 |
|
/* |
|
* This halt magic was a workaround for ancient floppy DMA |
|
* wreckage. It should be safe to remove. |
|
*/ |
|
static int hlt_counter; |
|
void disable_hlt(void) |
|
{ |
|
hlt_counter++; |
|
} |
|
EXPORT_SYMBOL(disable_hlt); |
|
|
|
void enable_hlt(void) |
|
{ |
|
hlt_counter--; |
|
} |
|
EXPORT_SYMBOL(enable_hlt); |
|
|
|
static inline int hlt_use_halt(void) |
|
{ |
|
return (!hlt_counter && boot_cpu_data.hlt_works_ok); |
|
} |
|
#else |
|
static inline int hlt_use_halt(void) |
|
{ |
|
return 1; |
|
} |
|
#endif |
|
|
|
#ifndef CONFIG_SMP |
|
static inline void play_dead(void) |
|
{ |
|
BUG(); |
|
} |
|
#endif |
|
|
|
#ifdef CONFIG_X86_64 |
|
void enter_idle(void) |
|
{ |
|
percpu_write(is_idle, 1); |
|
atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL); |
|
} |
|
|
|
static void __exit_idle(void) |
|
{ |
|
if (x86_test_and_clear_bit_percpu(0, is_idle) == 0) |
|
return; |
|
atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL); |
|
} |
|
|
|
/* Called from interrupts to signify idle end */ |
|
void exit_idle(void) |
|
{ |
|
/* idle loop has pid 0 */ |
|
if (current->pid) |
|
return; |
|
__exit_idle(); |
|
} |
|
#endif |
|
|
|
/* |
|
* The idle thread. There's no useful work to be |
|
* done, so just try to conserve power and have a |
|
* low exit latency (ie sit in a loop waiting for |
|
* somebody to say that they'd like to reschedule) |
|
*/ |
|
void cpu_idle(void) |
|
{ |
|
/* |
|
* If we're the non-boot CPU, nothing set the stack canary up |
|
* for us. CPU0 already has it initialized but no harm in |
|
* doing it again. This is a good place for updating it, as |
|
* we wont ever return from this function (so the invalid |
|
* canaries already on the stack wont ever trigger). |
|
*/ |
|
boot_init_stack_canary(); |
|
current_thread_info()->status |= TS_POLLING; |
|
|
|
while (1) { |
|
tick_nohz_idle_enter(); |
|
|
|
while (!need_resched()) { |
|
rmb(); |
|
|
|
if (cpu_is_offline(smp_processor_id())) |
|
play_dead(); |
|
|
|
/* |
|
* Idle routines should keep interrupts disabled |
|
* from here on, until they go to idle. |
|
* Otherwise, idle callbacks can misfire. |
|
*/ |
|
local_touch_nmi(); |
|
local_irq_disable(); |
|
|
|
enter_idle(); |
|
|
|
/* Don't trace irqs off for idle */ |
|
stop_critical_timings(); |
|
|
|
/* enter_idle() needs rcu for notifiers */ |
|
rcu_idle_enter(); |
|
|
|
if (cpuidle_idle_call()) |
|
pm_idle(); |
|
|
|
rcu_idle_exit(); |
|
start_critical_timings(); |
|
|
|
/* In many cases the interrupt that ended idle |
|
has already called exit_idle. But some idle |
|
loops can be woken up without interrupt. */ |
|
__exit_idle(); |
|
} |
|
|
|
tick_nohz_idle_exit(); |
|
preempt_enable_no_resched(); |
|
schedule(); |
|
preempt_disable(); |
|
} |
|
} |
|
|
|
/* |
|
* We use this if we don't have any better |
|
* idle routine.. |
|
*/ |
|
void default_idle(void) |
|
{ |
|
if (hlt_use_halt()) { |
|
trace_power_start_rcuidle(POWER_CSTATE, 1, smp_processor_id()); |
|
trace_cpu_idle_rcuidle(1, smp_processor_id()); |
|
current_thread_info()->status &= ~TS_POLLING; |
|
/* |
|
* TS_POLLING-cleared state must be visible before we |
|
* test NEED_RESCHED: |
|
*/ |
|
smp_mb(); |
|
|
|
if (!need_resched()) |
|
safe_halt(); /* enables interrupts racelessly */ |
|
else |
|
local_irq_enable(); |
|
current_thread_info()->status |= TS_POLLING; |
|
trace_power_end_rcuidle(smp_processor_id()); |
|
trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id()); |
|
} else { |
|
local_irq_enable(); |
|
/* loop is done by the caller */ |
|
cpu_relax(); |
|
} |
|
} |
|
#ifdef CONFIG_APM_MODULE |
|
EXPORT_SYMBOL(default_idle); |
|
#endif |
|
|
|
bool set_pm_idle_to_default(void) |
|
{ |
|
bool ret = !!pm_idle; |
|
|
|
pm_idle = default_idle; |
|
|
|
return ret; |
|
} |
|
void stop_this_cpu(void *dummy) |
|
{ |
|
local_irq_disable(); |
|
/* |
|
* Remove this CPU: |
|
*/ |
|
set_cpu_online(smp_processor_id(), false); |
|
disable_local_APIC(); |
|
|
|
for (;;) { |
|
if (hlt_works(smp_processor_id())) |
|
halt(); |
|
} |
|
} |
|
|
|
static void do_nothing(void *unused) |
|
{ |
|
} |
|
|
|
/* |
|
* cpu_idle_wait - Used to ensure that all the CPUs discard old value of |
|
* pm_idle and update to new pm_idle value. Required while changing pm_idle |
|
* handler on SMP systems. |
|
* |
|
* Caller must have changed pm_idle to the new value before the call. Old |
|
* pm_idle value will not be used by any CPU after the return of this function. |
|
*/ |
|
void cpu_idle_wait(void) |
|
{ |
|
smp_mb(); |
|
/* kick all the CPUs so that they exit out of pm_idle */ |
|
smp_call_function(do_nothing, NULL, 1); |
|
} |
|
EXPORT_SYMBOL_GPL(cpu_idle_wait); |
|
|
|
/* Default MONITOR/MWAIT with no hints, used for default C1 state */ |
|
static void mwait_idle(void) |
|
{ |
|
if (!need_resched()) { |
|
trace_power_start_rcuidle(POWER_CSTATE, 1, smp_processor_id()); |
|
trace_cpu_idle_rcuidle(1, smp_processor_id()); |
|
if (this_cpu_has(X86_FEATURE_CLFLUSH_MONITOR)) |
|
clflush((void *)¤t_thread_info()->flags); |
|
|
|
__monitor((void *)¤t_thread_info()->flags, 0, 0); |
|
smp_mb(); |
|
if (!need_resched()) |
|
__sti_mwait(0, 0); |
|
else |
|
local_irq_enable(); |
|
trace_power_end_rcuidle(smp_processor_id()); |
|
trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id()); |
|
} else |
|
local_irq_enable(); |
|
} |
|
|
|
/* |
|
* On SMP it's slightly faster (but much more power-consuming!) |
|
* to poll the ->work.need_resched flag instead of waiting for the |
|
* cross-CPU IPI to arrive. Use this option with caution. |
|
*/ |
|
static void poll_idle(void) |
|
{ |
|
trace_power_start_rcuidle(POWER_CSTATE, 0, smp_processor_id()); |
|
trace_cpu_idle_rcuidle(0, smp_processor_id()); |
|
local_irq_enable(); |
|
while (!need_resched()) |
|
cpu_relax(); |
|
trace_power_end_rcuidle(smp_processor_id()); |
|
trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id()); |
|
} |
|
|
|
/* |
|
* mwait selection logic: |
|
* |
|
* It depends on the CPU. For AMD CPUs that support MWAIT this is |
|
* wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings |
|
* then depend on a clock divisor and current Pstate of the core. If |
|
* all cores of a processor are in halt state (C1) the processor can |
|
* enter the C1E (C1 enhanced) state. If mwait is used this will never |
|
* happen. |
|
* |
|
* idle=mwait overrides this decision and forces the usage of mwait. |
|
*/ |
|
|
|
#define MWAIT_INFO 0x05 |
|
#define MWAIT_ECX_EXTENDED_INFO 0x01 |
|
#define MWAIT_EDX_C1 0xf0 |
|
|
|
int mwait_usable(const struct cpuinfo_x86 *c) |
|
{ |
|
u32 eax, ebx, ecx, edx; |
|
|
|
if (boot_option_idle_override == IDLE_FORCE_MWAIT) |
|
return 1; |
|
|
|
if (c->cpuid_level < MWAIT_INFO) |
|
return 0; |
|
|
|
cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx); |
|
/* Check, whether EDX has extended info about MWAIT */ |
|
if (!(ecx & MWAIT_ECX_EXTENDED_INFO)) |
|
return 1; |
|
|
|
/* |
|
* edx enumeratios MONITOR/MWAIT extensions. Check, whether |
|
* C1 supports MWAIT |
|
*/ |
|
return (edx & MWAIT_EDX_C1); |
|
} |
|
|
|
bool amd_e400_c1e_detected; |
|
EXPORT_SYMBOL(amd_e400_c1e_detected); |
|
|
|
static cpumask_var_t amd_e400_c1e_mask; |
|
|
|
void amd_e400_remove_cpu(int cpu) |
|
{ |
|
if (amd_e400_c1e_mask != NULL) |
|
cpumask_clear_cpu(cpu, amd_e400_c1e_mask); |
|
} |
|
|
|
/* |
|
* AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt |
|
* pending message MSR. If we detect C1E, then we handle it the same |
|
* way as C3 power states (local apic timer and TSC stop) |
|
*/ |
|
static void amd_e400_idle(void) |
|
{ |
|
if (need_resched()) |
|
return; |
|
|
|
if (!amd_e400_c1e_detected) { |
|
u32 lo, hi; |
|
|
|
rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi); |
|
|
|
if (lo & K8_INTP_C1E_ACTIVE_MASK) { |
|
amd_e400_c1e_detected = true; |
|
if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC)) |
|
mark_tsc_unstable("TSC halt in AMD C1E"); |
|
printk(KERN_INFO "System has AMD C1E enabled\n"); |
|
} |
|
} |
|
|
|
if (amd_e400_c1e_detected) { |
|
int cpu = smp_processor_id(); |
|
|
|
if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) { |
|
cpumask_set_cpu(cpu, amd_e400_c1e_mask); |
|
/* |
|
* Force broadcast so ACPI can not interfere. |
|
*/ |
|
clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE, |
|
&cpu); |
|
printk(KERN_INFO "Switch to broadcast mode on CPU%d\n", |
|
cpu); |
|
} |
|
clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu); |
|
|
|
default_idle(); |
|
|
|
/* |
|
* The switch back from broadcast mode needs to be |
|
* called with interrupts disabled. |
|
*/ |
|
local_irq_disable(); |
|
clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu); |
|
local_irq_enable(); |
|
} else |
|
default_idle(); |
|
} |
|
|
|
void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c) |
|
{ |
|
#ifdef CONFIG_SMP |
|
if (pm_idle == poll_idle && smp_num_siblings > 1) { |
|
printk_once(KERN_WARNING "WARNING: polling idle and HT enabled," |
|
" performance may degrade.\n"); |
|
} |
|
#endif |
|
if (pm_idle) |
|
return; |
|
|
|
if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) { |
|
/* |
|
* One CPU supports mwait => All CPUs supports mwait |
|
*/ |
|
printk(KERN_INFO "using mwait in idle threads.\n"); |
|
pm_idle = mwait_idle; |
|
} else if (cpu_has_amd_erratum(amd_erratum_400)) { |
|
/* E400: APIC timer interrupt does not wake up CPU from C1e */ |
|
printk(KERN_INFO "using AMD E400 aware idle routine\n"); |
|
pm_idle = amd_e400_idle; |
|
} else |
|
pm_idle = default_idle; |
|
} |
|
|
|
void __init init_amd_e400_c1e_mask(void) |
|
{ |
|
/* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */ |
|
if (pm_idle == amd_e400_idle) |
|
zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL); |
|
} |
|
|
|
static int __init idle_setup(char *str) |
|
{ |
|
if (!str) |
|
return -EINVAL; |
|
|
|
if (!strcmp(str, "poll")) { |
|
printk("using polling idle threads.\n"); |
|
pm_idle = poll_idle; |
|
boot_option_idle_override = IDLE_POLL; |
|
} else if (!strcmp(str, "mwait")) { |
|
boot_option_idle_override = IDLE_FORCE_MWAIT; |
|
WARN_ONCE(1, "\"idle=mwait\" will be removed in 2012\n"); |
|
} else if (!strcmp(str, "halt")) { |
|
/* |
|
* When the boot option of idle=halt is added, halt is |
|
* forced to be used for CPU idle. In such case CPU C2/C3 |
|
* won't be used again. |
|
* To continue to load the CPU idle driver, don't touch |
|
* the boot_option_idle_override. |
|
*/ |
|
pm_idle = default_idle; |
|
boot_option_idle_override = IDLE_HALT; |
|
} else if (!strcmp(str, "nomwait")) { |
|
/* |
|
* If the boot option of "idle=nomwait" is added, |
|
* it means that mwait will be disabled for CPU C2/C3 |
|
* states. In such case it won't touch the variable |
|
* of boot_option_idle_override. |
|
*/ |
|
boot_option_idle_override = IDLE_NOMWAIT; |
|
} else |
|
return -1; |
|
|
|
return 0; |
|
} |
|
early_param("idle", idle_setup); |
|
|
|
unsigned long arch_align_stack(unsigned long sp) |
|
{ |
|
if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) |
|
sp -= get_random_int() % 8192; |
|
return sp & ~0xf; |
|
} |
|
|
|
unsigned long arch_randomize_brk(struct mm_struct *mm) |
|
{ |
|
unsigned long range_end = mm->brk + 0x02000000; |
|
return randomize_range(mm->brk, range_end, 0) ? : mm->brk; |
|
} |
|
|
|
|