You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1327 lines
31 KiB
1327 lines
31 KiB
#include <linux/bootmem.h> |
|
#include <linux/linkage.h> |
|
#include <linux/bitops.h> |
|
#include <linux/kernel.h> |
|
#include <linux/module.h> |
|
#include <linux/percpu.h> |
|
#include <linux/string.h> |
|
#include <linux/delay.h> |
|
#include <linux/sched.h> |
|
#include <linux/init.h> |
|
#include <linux/kgdb.h> |
|
#include <linux/smp.h> |
|
#include <linux/io.h> |
|
|
|
#include <asm/stackprotector.h> |
|
#include <asm/perf_event.h> |
|
#include <asm/mmu_context.h> |
|
#include <asm/archrandom.h> |
|
#include <asm/hypervisor.h> |
|
#include <asm/processor.h> |
|
#include <asm/debugreg.h> |
|
#include <asm/sections.h> |
|
#include <linux/topology.h> |
|
#include <linux/cpumask.h> |
|
#include <asm/pgtable.h> |
|
#include <linux/atomic.h> |
|
#include <asm/proto.h> |
|
#include <asm/setup.h> |
|
#include <asm/apic.h> |
|
#include <asm/desc.h> |
|
#include <asm/i387.h> |
|
#include <asm/fpu-internal.h> |
|
#include <asm/mtrr.h> |
|
#include <linux/numa.h> |
|
#include <asm/asm.h> |
|
#include <asm/cpu.h> |
|
#include <asm/mce.h> |
|
#include <asm/msr.h> |
|
#include <asm/pat.h> |
|
|
|
#ifdef CONFIG_X86_LOCAL_APIC |
|
#include <asm/uv/uv.h> |
|
#endif |
|
|
|
#include "cpu.h" |
|
|
|
/* all of these masks are initialized in setup_cpu_local_masks() */ |
|
cpumask_var_t cpu_initialized_mask; |
|
cpumask_var_t cpu_callout_mask; |
|
cpumask_var_t cpu_callin_mask; |
|
|
|
/* representing cpus for which sibling maps can be computed */ |
|
cpumask_var_t cpu_sibling_setup_mask; |
|
|
|
/* correctly size the local cpu masks */ |
|
void __init setup_cpu_local_masks(void) |
|
{ |
|
alloc_bootmem_cpumask_var(&cpu_initialized_mask); |
|
alloc_bootmem_cpumask_var(&cpu_callin_mask); |
|
alloc_bootmem_cpumask_var(&cpu_callout_mask); |
|
alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask); |
|
} |
|
|
|
static void __cpuinit default_init(struct cpuinfo_x86 *c) |
|
{ |
|
#ifdef CONFIG_X86_64 |
|
cpu_detect_cache_sizes(c); |
|
#else |
|
/* Not much we can do here... */ |
|
/* Check if at least it has cpuid */ |
|
if (c->cpuid_level == -1) { |
|
/* No cpuid. It must be an ancient CPU */ |
|
if (c->x86 == 4) |
|
strcpy(c->x86_model_id, "486"); |
|
else if (c->x86 == 3) |
|
strcpy(c->x86_model_id, "386"); |
|
} |
|
#endif |
|
} |
|
|
|
static const struct cpu_dev __cpuinitconst default_cpu = { |
|
.c_init = default_init, |
|
.c_vendor = "Unknown", |
|
.c_x86_vendor = X86_VENDOR_UNKNOWN, |
|
}; |
|
|
|
static const struct cpu_dev *this_cpu __cpuinitdata = &default_cpu; |
|
|
|
DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = { |
|
#ifdef CONFIG_X86_64 |
|
/* |
|
* We need valid kernel segments for data and code in long mode too |
|
* IRET will check the segment types kkeil 2000/10/28 |
|
* Also sysret mandates a special GDT layout |
|
* |
|
* TLS descriptors are currently at a different place compared to i386. |
|
* Hopefully nobody expects them at a fixed place (Wine?) |
|
*/ |
|
[GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff), |
|
[GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff), |
|
[GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff), |
|
[GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff), |
|
[GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff), |
|
[GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff), |
|
#else |
|
[GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff), |
|
[GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff), |
|
[GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff), |
|
[GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff), |
|
/* |
|
* Segments used for calling PnP BIOS have byte granularity. |
|
* They code segments and data segments have fixed 64k limits, |
|
* the transfer segment sizes are set at run time. |
|
*/ |
|
/* 32-bit code */ |
|
[GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff), |
|
/* 16-bit code */ |
|
[GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff), |
|
/* 16-bit data */ |
|
[GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff), |
|
/* 16-bit data */ |
|
[GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0), |
|
/* 16-bit data */ |
|
[GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0), |
|
/* |
|
* The APM segments have byte granularity and their bases |
|
* are set at run time. All have 64k limits. |
|
*/ |
|
/* 32-bit code */ |
|
[GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff), |
|
/* 16-bit code */ |
|
[GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff), |
|
/* data */ |
|
[GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff), |
|
|
|
[GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff), |
|
[GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff), |
|
GDT_STACK_CANARY_INIT |
|
#endif |
|
} }; |
|
EXPORT_PER_CPU_SYMBOL_GPL(gdt_page); |
|
|
|
static int __init x86_xsave_setup(char *s) |
|
{ |
|
setup_clear_cpu_cap(X86_FEATURE_XSAVE); |
|
setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT); |
|
return 1; |
|
} |
|
__setup("noxsave", x86_xsave_setup); |
|
|
|
static int __init x86_xsaveopt_setup(char *s) |
|
{ |
|
setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT); |
|
return 1; |
|
} |
|
__setup("noxsaveopt", x86_xsaveopt_setup); |
|
|
|
#ifdef CONFIG_X86_32 |
|
static int cachesize_override __cpuinitdata = -1; |
|
static int disable_x86_serial_nr __cpuinitdata = 1; |
|
|
|
static int __init cachesize_setup(char *str) |
|
{ |
|
get_option(&str, &cachesize_override); |
|
return 1; |
|
} |
|
__setup("cachesize=", cachesize_setup); |
|
|
|
static int __init x86_fxsr_setup(char *s) |
|
{ |
|
setup_clear_cpu_cap(X86_FEATURE_FXSR); |
|
setup_clear_cpu_cap(X86_FEATURE_XMM); |
|
return 1; |
|
} |
|
__setup("nofxsr", x86_fxsr_setup); |
|
|
|
static int __init x86_sep_setup(char *s) |
|
{ |
|
setup_clear_cpu_cap(X86_FEATURE_SEP); |
|
return 1; |
|
} |
|
__setup("nosep", x86_sep_setup); |
|
|
|
/* Standard macro to see if a specific flag is changeable */ |
|
static inline int flag_is_changeable_p(u32 flag) |
|
{ |
|
u32 f1, f2; |
|
|
|
/* |
|
* Cyrix and IDT cpus allow disabling of CPUID |
|
* so the code below may return different results |
|
* when it is executed before and after enabling |
|
* the CPUID. Add "volatile" to not allow gcc to |
|
* optimize the subsequent calls to this function. |
|
*/ |
|
asm volatile ("pushfl \n\t" |
|
"pushfl \n\t" |
|
"popl %0 \n\t" |
|
"movl %0, %1 \n\t" |
|
"xorl %2, %0 \n\t" |
|
"pushl %0 \n\t" |
|
"popfl \n\t" |
|
"pushfl \n\t" |
|
"popl %0 \n\t" |
|
"popfl \n\t" |
|
|
|
: "=&r" (f1), "=&r" (f2) |
|
: "ir" (flag)); |
|
|
|
return ((f1^f2) & flag) != 0; |
|
} |
|
|
|
/* Probe for the CPUID instruction */ |
|
static int __cpuinit have_cpuid_p(void) |
|
{ |
|
return flag_is_changeable_p(X86_EFLAGS_ID); |
|
} |
|
|
|
static void __cpuinit squash_the_stupid_serial_number(struct cpuinfo_x86 *c) |
|
{ |
|
unsigned long lo, hi; |
|
|
|
if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr) |
|
return; |
|
|
|
/* Disable processor serial number: */ |
|
|
|
rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi); |
|
lo |= 0x200000; |
|
wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi); |
|
|
|
printk(KERN_NOTICE "CPU serial number disabled.\n"); |
|
clear_cpu_cap(c, X86_FEATURE_PN); |
|
|
|
/* Disabling the serial number may affect the cpuid level */ |
|
c->cpuid_level = cpuid_eax(0); |
|
} |
|
|
|
static int __init x86_serial_nr_setup(char *s) |
|
{ |
|
disable_x86_serial_nr = 0; |
|
return 1; |
|
} |
|
__setup("serialnumber", x86_serial_nr_setup); |
|
#else |
|
static inline int flag_is_changeable_p(u32 flag) |
|
{ |
|
return 1; |
|
} |
|
/* Probe for the CPUID instruction */ |
|
static inline int have_cpuid_p(void) |
|
{ |
|
return 1; |
|
} |
|
static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c) |
|
{ |
|
} |
|
#endif |
|
|
|
static int disable_smep __cpuinitdata; |
|
static __init int setup_disable_smep(char *arg) |
|
{ |
|
disable_smep = 1; |
|
return 1; |
|
} |
|
__setup("nosmep", setup_disable_smep); |
|
|
|
static __cpuinit void setup_smep(struct cpuinfo_x86 *c) |
|
{ |
|
if (cpu_has(c, X86_FEATURE_SMEP)) { |
|
if (unlikely(disable_smep)) { |
|
setup_clear_cpu_cap(X86_FEATURE_SMEP); |
|
clear_in_cr4(X86_CR4_SMEP); |
|
} else |
|
set_in_cr4(X86_CR4_SMEP); |
|
} |
|
} |
|
|
|
/* |
|
* Some CPU features depend on higher CPUID levels, which may not always |
|
* be available due to CPUID level capping or broken virtualization |
|
* software. Add those features to this table to auto-disable them. |
|
*/ |
|
struct cpuid_dependent_feature { |
|
u32 feature; |
|
u32 level; |
|
}; |
|
|
|
static const struct cpuid_dependent_feature __cpuinitconst |
|
cpuid_dependent_features[] = { |
|
{ X86_FEATURE_MWAIT, 0x00000005 }, |
|
{ X86_FEATURE_DCA, 0x00000009 }, |
|
{ X86_FEATURE_XSAVE, 0x0000000d }, |
|
{ 0, 0 } |
|
}; |
|
|
|
static void __cpuinit filter_cpuid_features(struct cpuinfo_x86 *c, bool warn) |
|
{ |
|
const struct cpuid_dependent_feature *df; |
|
|
|
for (df = cpuid_dependent_features; df->feature; df++) { |
|
|
|
if (!cpu_has(c, df->feature)) |
|
continue; |
|
/* |
|
* Note: cpuid_level is set to -1 if unavailable, but |
|
* extended_extended_level is set to 0 if unavailable |
|
* and the legitimate extended levels are all negative |
|
* when signed; hence the weird messing around with |
|
* signs here... |
|
*/ |
|
if (!((s32)df->level < 0 ? |
|
(u32)df->level > (u32)c->extended_cpuid_level : |
|
(s32)df->level > (s32)c->cpuid_level)) |
|
continue; |
|
|
|
clear_cpu_cap(c, df->feature); |
|
if (!warn) |
|
continue; |
|
|
|
printk(KERN_WARNING |
|
"CPU: CPU feature %s disabled, no CPUID level 0x%x\n", |
|
x86_cap_flags[df->feature], df->level); |
|
} |
|
} |
|
|
|
/* |
|
* Naming convention should be: <Name> [(<Codename>)] |
|
* This table only is used unless init_<vendor>() below doesn't set it; |
|
* in particular, if CPUID levels 0x80000002..4 are supported, this |
|
* isn't used |
|
*/ |
|
|
|
/* Look up CPU names by table lookup. */ |
|
static const char *__cpuinit table_lookup_model(struct cpuinfo_x86 *c) |
|
{ |
|
const struct cpu_model_info *info; |
|
|
|
if (c->x86_model >= 16) |
|
return NULL; /* Range check */ |
|
|
|
if (!this_cpu) |
|
return NULL; |
|
|
|
info = this_cpu->c_models; |
|
|
|
while (info && info->family) { |
|
if (info->family == c->x86) |
|
return info->model_names[c->x86_model]; |
|
info++; |
|
} |
|
return NULL; /* Not found */ |
|
} |
|
|
|
__u32 cpu_caps_cleared[NCAPINTS] __cpuinitdata; |
|
__u32 cpu_caps_set[NCAPINTS] __cpuinitdata; |
|
|
|
void load_percpu_segment(int cpu) |
|
{ |
|
#ifdef CONFIG_X86_32 |
|
loadsegment(fs, __KERNEL_PERCPU); |
|
#else |
|
loadsegment(gs, 0); |
|
wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu)); |
|
#endif |
|
load_stack_canary_segment(); |
|
} |
|
|
|
/* |
|
* Current gdt points %fs at the "master" per-cpu area: after this, |
|
* it's on the real one. |
|
*/ |
|
void switch_to_new_gdt(int cpu) |
|
{ |
|
struct desc_ptr gdt_descr; |
|
|
|
gdt_descr.address = (long)get_cpu_gdt_table(cpu); |
|
gdt_descr.size = GDT_SIZE - 1; |
|
load_gdt(&gdt_descr); |
|
/* Reload the per-cpu base */ |
|
|
|
load_percpu_segment(cpu); |
|
} |
|
|
|
static const struct cpu_dev *__cpuinitdata cpu_devs[X86_VENDOR_NUM] = {}; |
|
|
|
static void __cpuinit get_model_name(struct cpuinfo_x86 *c) |
|
{ |
|
unsigned int *v; |
|
char *p, *q; |
|
|
|
if (c->extended_cpuid_level < 0x80000004) |
|
return; |
|
|
|
v = (unsigned int *)c->x86_model_id; |
|
cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]); |
|
cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]); |
|
cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]); |
|
c->x86_model_id[48] = 0; |
|
|
|
/* |
|
* Intel chips right-justify this string for some dumb reason; |
|
* undo that brain damage: |
|
*/ |
|
p = q = &c->x86_model_id[0]; |
|
while (*p == ' ') |
|
p++; |
|
if (p != q) { |
|
while (*p) |
|
*q++ = *p++; |
|
while (q <= &c->x86_model_id[48]) |
|
*q++ = '\0'; /* Zero-pad the rest */ |
|
} |
|
} |
|
|
|
void __cpuinit cpu_detect_cache_sizes(struct cpuinfo_x86 *c) |
|
{ |
|
unsigned int n, dummy, ebx, ecx, edx, l2size; |
|
|
|
n = c->extended_cpuid_level; |
|
|
|
if (n >= 0x80000005) { |
|
cpuid(0x80000005, &dummy, &ebx, &ecx, &edx); |
|
c->x86_cache_size = (ecx>>24) + (edx>>24); |
|
#ifdef CONFIG_X86_64 |
|
/* On K8 L1 TLB is inclusive, so don't count it */ |
|
c->x86_tlbsize = 0; |
|
#endif |
|
} |
|
|
|
if (n < 0x80000006) /* Some chips just has a large L1. */ |
|
return; |
|
|
|
cpuid(0x80000006, &dummy, &ebx, &ecx, &edx); |
|
l2size = ecx >> 16; |
|
|
|
#ifdef CONFIG_X86_64 |
|
c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff); |
|
#else |
|
/* do processor-specific cache resizing */ |
|
if (this_cpu->c_size_cache) |
|
l2size = this_cpu->c_size_cache(c, l2size); |
|
|
|
/* Allow user to override all this if necessary. */ |
|
if (cachesize_override != -1) |
|
l2size = cachesize_override; |
|
|
|
if (l2size == 0) |
|
return; /* Again, no L2 cache is possible */ |
|
#endif |
|
|
|
c->x86_cache_size = l2size; |
|
} |
|
|
|
void __cpuinit detect_ht(struct cpuinfo_x86 *c) |
|
{ |
|
#ifdef CONFIG_X86_HT |
|
u32 eax, ebx, ecx, edx; |
|
int index_msb, core_bits; |
|
static bool printed; |
|
|
|
if (!cpu_has(c, X86_FEATURE_HT)) |
|
return; |
|
|
|
if (cpu_has(c, X86_FEATURE_CMP_LEGACY)) |
|
goto out; |
|
|
|
if (cpu_has(c, X86_FEATURE_XTOPOLOGY)) |
|
return; |
|
|
|
cpuid(1, &eax, &ebx, &ecx, &edx); |
|
|
|
smp_num_siblings = (ebx & 0xff0000) >> 16; |
|
|
|
if (smp_num_siblings == 1) { |
|
printk_once(KERN_INFO "CPU0: Hyper-Threading is disabled\n"); |
|
goto out; |
|
} |
|
|
|
if (smp_num_siblings <= 1) |
|
goto out; |
|
|
|
index_msb = get_count_order(smp_num_siblings); |
|
c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb); |
|
|
|
smp_num_siblings = smp_num_siblings / c->x86_max_cores; |
|
|
|
index_msb = get_count_order(smp_num_siblings); |
|
|
|
core_bits = get_count_order(c->x86_max_cores); |
|
|
|
c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) & |
|
((1 << core_bits) - 1); |
|
|
|
out: |
|
if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) { |
|
printk(KERN_INFO "CPU: Physical Processor ID: %d\n", |
|
c->phys_proc_id); |
|
printk(KERN_INFO "CPU: Processor Core ID: %d\n", |
|
c->cpu_core_id); |
|
printed = 1; |
|
} |
|
#endif |
|
} |
|
|
|
static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c) |
|
{ |
|
char *v = c->x86_vendor_id; |
|
int i; |
|
|
|
for (i = 0; i < X86_VENDOR_NUM; i++) { |
|
if (!cpu_devs[i]) |
|
break; |
|
|
|
if (!strcmp(v, cpu_devs[i]->c_ident[0]) || |
|
(cpu_devs[i]->c_ident[1] && |
|
!strcmp(v, cpu_devs[i]->c_ident[1]))) { |
|
|
|
this_cpu = cpu_devs[i]; |
|
c->x86_vendor = this_cpu->c_x86_vendor; |
|
return; |
|
} |
|
} |
|
|
|
printk_once(KERN_ERR |
|
"CPU: vendor_id '%s' unknown, using generic init.\n" \ |
|
"CPU: Your system may be unstable.\n", v); |
|
|
|
c->x86_vendor = X86_VENDOR_UNKNOWN; |
|
this_cpu = &default_cpu; |
|
} |
|
|
|
void __cpuinit cpu_detect(struct cpuinfo_x86 *c) |
|
{ |
|
/* Get vendor name */ |
|
cpuid(0x00000000, (unsigned int *)&c->cpuid_level, |
|
(unsigned int *)&c->x86_vendor_id[0], |
|
(unsigned int *)&c->x86_vendor_id[8], |
|
(unsigned int *)&c->x86_vendor_id[4]); |
|
|
|
c->x86 = 4; |
|
/* Intel-defined flags: level 0x00000001 */ |
|
if (c->cpuid_level >= 0x00000001) { |
|
u32 junk, tfms, cap0, misc; |
|
|
|
cpuid(0x00000001, &tfms, &misc, &junk, &cap0); |
|
c->x86 = (tfms >> 8) & 0xf; |
|
c->x86_model = (tfms >> 4) & 0xf; |
|
c->x86_mask = tfms & 0xf; |
|
|
|
if (c->x86 == 0xf) |
|
c->x86 += (tfms >> 20) & 0xff; |
|
if (c->x86 >= 0x6) |
|
c->x86_model += ((tfms >> 16) & 0xf) << 4; |
|
|
|
if (cap0 & (1<<19)) { |
|
c->x86_clflush_size = ((misc >> 8) & 0xff) * 8; |
|
c->x86_cache_alignment = c->x86_clflush_size; |
|
} |
|
} |
|
} |
|
|
|
void __cpuinit get_cpu_cap(struct cpuinfo_x86 *c) |
|
{ |
|
u32 tfms, xlvl; |
|
u32 ebx; |
|
|
|
/* Intel-defined flags: level 0x00000001 */ |
|
if (c->cpuid_level >= 0x00000001) { |
|
u32 capability, excap; |
|
|
|
cpuid(0x00000001, &tfms, &ebx, &excap, &capability); |
|
c->x86_capability[0] = capability; |
|
c->x86_capability[4] = excap; |
|
} |
|
|
|
/* Additional Intel-defined flags: level 0x00000007 */ |
|
if (c->cpuid_level >= 0x00000007) { |
|
u32 eax, ebx, ecx, edx; |
|
|
|
cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx); |
|
|
|
c->x86_capability[9] = ebx; |
|
} |
|
|
|
/* AMD-defined flags: level 0x80000001 */ |
|
xlvl = cpuid_eax(0x80000000); |
|
c->extended_cpuid_level = xlvl; |
|
|
|
if ((xlvl & 0xffff0000) == 0x80000000) { |
|
if (xlvl >= 0x80000001) { |
|
c->x86_capability[1] = cpuid_edx(0x80000001); |
|
c->x86_capability[6] = cpuid_ecx(0x80000001); |
|
} |
|
} |
|
|
|
if (c->extended_cpuid_level >= 0x80000008) { |
|
u32 eax = cpuid_eax(0x80000008); |
|
|
|
c->x86_virt_bits = (eax >> 8) & 0xff; |
|
c->x86_phys_bits = eax & 0xff; |
|
} |
|
#ifdef CONFIG_X86_32 |
|
else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36)) |
|
c->x86_phys_bits = 36; |
|
#endif |
|
|
|
if (c->extended_cpuid_level >= 0x80000007) |
|
c->x86_power = cpuid_edx(0x80000007); |
|
|
|
init_scattered_cpuid_features(c); |
|
} |
|
|
|
static void __cpuinit identify_cpu_without_cpuid(struct cpuinfo_x86 *c) |
|
{ |
|
#ifdef CONFIG_X86_32 |
|
int i; |
|
|
|
/* |
|
* First of all, decide if this is a 486 or higher |
|
* It's a 486 if we can modify the AC flag |
|
*/ |
|
if (flag_is_changeable_p(X86_EFLAGS_AC)) |
|
c->x86 = 4; |
|
else |
|
c->x86 = 3; |
|
|
|
for (i = 0; i < X86_VENDOR_NUM; i++) |
|
if (cpu_devs[i] && cpu_devs[i]->c_identify) { |
|
c->x86_vendor_id[0] = 0; |
|
cpu_devs[i]->c_identify(c); |
|
if (c->x86_vendor_id[0]) { |
|
get_cpu_vendor(c); |
|
break; |
|
} |
|
} |
|
#endif |
|
} |
|
|
|
/* |
|
* Do minimum CPU detection early. |
|
* Fields really needed: vendor, cpuid_level, family, model, mask, |
|
* cache alignment. |
|
* The others are not touched to avoid unwanted side effects. |
|
* |
|
* WARNING: this function is only called on the BP. Don't add code here |
|
* that is supposed to run on all CPUs. |
|
*/ |
|
static void __init early_identify_cpu(struct cpuinfo_x86 *c) |
|
{ |
|
#ifdef CONFIG_X86_64 |
|
c->x86_clflush_size = 64; |
|
c->x86_phys_bits = 36; |
|
c->x86_virt_bits = 48; |
|
#else |
|
c->x86_clflush_size = 32; |
|
c->x86_phys_bits = 32; |
|
c->x86_virt_bits = 32; |
|
#endif |
|
c->x86_cache_alignment = c->x86_clflush_size; |
|
|
|
memset(&c->x86_capability, 0, sizeof c->x86_capability); |
|
c->extended_cpuid_level = 0; |
|
|
|
if (!have_cpuid_p()) |
|
identify_cpu_without_cpuid(c); |
|
|
|
/* cyrix could have cpuid enabled via c_identify()*/ |
|
if (!have_cpuid_p()) |
|
return; |
|
|
|
cpu_detect(c); |
|
|
|
get_cpu_vendor(c); |
|
|
|
get_cpu_cap(c); |
|
|
|
if (this_cpu->c_early_init) |
|
this_cpu->c_early_init(c); |
|
|
|
c->cpu_index = 0; |
|
filter_cpuid_features(c, false); |
|
|
|
setup_smep(c); |
|
|
|
if (this_cpu->c_bsp_init) |
|
this_cpu->c_bsp_init(c); |
|
} |
|
|
|
void __init early_cpu_init(void) |
|
{ |
|
const struct cpu_dev *const *cdev; |
|
int count = 0; |
|
|
|
#ifdef CONFIG_PROCESSOR_SELECT |
|
printk(KERN_INFO "KERNEL supported cpus:\n"); |
|
#endif |
|
|
|
for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) { |
|
const struct cpu_dev *cpudev = *cdev; |
|
|
|
if (count >= X86_VENDOR_NUM) |
|
break; |
|
cpu_devs[count] = cpudev; |
|
count++; |
|
|
|
#ifdef CONFIG_PROCESSOR_SELECT |
|
{ |
|
unsigned int j; |
|
|
|
for (j = 0; j < 2; j++) { |
|
if (!cpudev->c_ident[j]) |
|
continue; |
|
printk(KERN_INFO " %s %s\n", cpudev->c_vendor, |
|
cpudev->c_ident[j]); |
|
} |
|
} |
|
#endif |
|
} |
|
early_identify_cpu(&boot_cpu_data); |
|
} |
|
|
|
/* |
|
* The NOPL instruction is supposed to exist on all CPUs of family >= 6; |
|
* unfortunately, that's not true in practice because of early VIA |
|
* chips and (more importantly) broken virtualizers that are not easy |
|
* to detect. In the latter case it doesn't even *fail* reliably, so |
|
* probing for it doesn't even work. Disable it completely on 32-bit |
|
* unless we can find a reliable way to detect all the broken cases. |
|
* Enable it explicitly on 64-bit for non-constant inputs of cpu_has(). |
|
*/ |
|
static void __cpuinit detect_nopl(struct cpuinfo_x86 *c) |
|
{ |
|
#ifdef CONFIG_X86_32 |
|
clear_cpu_cap(c, X86_FEATURE_NOPL); |
|
#else |
|
set_cpu_cap(c, X86_FEATURE_NOPL); |
|
#endif |
|
} |
|
|
|
static void __cpuinit generic_identify(struct cpuinfo_x86 *c) |
|
{ |
|
c->extended_cpuid_level = 0; |
|
|
|
if (!have_cpuid_p()) |
|
identify_cpu_without_cpuid(c); |
|
|
|
/* cyrix could have cpuid enabled via c_identify()*/ |
|
if (!have_cpuid_p()) |
|
return; |
|
|
|
cpu_detect(c); |
|
|
|
get_cpu_vendor(c); |
|
|
|
get_cpu_cap(c); |
|
|
|
if (c->cpuid_level >= 0x00000001) { |
|
c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF; |
|
#ifdef CONFIG_X86_32 |
|
# ifdef CONFIG_X86_HT |
|
c->apicid = apic->phys_pkg_id(c->initial_apicid, 0); |
|
# else |
|
c->apicid = c->initial_apicid; |
|
# endif |
|
#endif |
|
c->phys_proc_id = c->initial_apicid; |
|
} |
|
|
|
setup_smep(c); |
|
|
|
get_model_name(c); /* Default name */ |
|
|
|
detect_nopl(c); |
|
} |
|
|
|
/* |
|
* This does the hard work of actually picking apart the CPU stuff... |
|
*/ |
|
static void __cpuinit identify_cpu(struct cpuinfo_x86 *c) |
|
{ |
|
int i; |
|
|
|
c->loops_per_jiffy = loops_per_jiffy; |
|
c->x86_cache_size = -1; |
|
c->x86_vendor = X86_VENDOR_UNKNOWN; |
|
c->x86_model = c->x86_mask = 0; /* So far unknown... */ |
|
c->x86_vendor_id[0] = '\0'; /* Unset */ |
|
c->x86_model_id[0] = '\0'; /* Unset */ |
|
c->x86_max_cores = 1; |
|
c->x86_coreid_bits = 0; |
|
#ifdef CONFIG_X86_64 |
|
c->x86_clflush_size = 64; |
|
c->x86_phys_bits = 36; |
|
c->x86_virt_bits = 48; |
|
#else |
|
c->cpuid_level = -1; /* CPUID not detected */ |
|
c->x86_clflush_size = 32; |
|
c->x86_phys_bits = 32; |
|
c->x86_virt_bits = 32; |
|
#endif |
|
c->x86_cache_alignment = c->x86_clflush_size; |
|
memset(&c->x86_capability, 0, sizeof c->x86_capability); |
|
|
|
generic_identify(c); |
|
|
|
if (this_cpu->c_identify) |
|
this_cpu->c_identify(c); |
|
|
|
/* Clear/Set all flags overriden by options, after probe */ |
|
for (i = 0; i < NCAPINTS; i++) { |
|
c->x86_capability[i] &= ~cpu_caps_cleared[i]; |
|
c->x86_capability[i] |= cpu_caps_set[i]; |
|
} |
|
|
|
#ifdef CONFIG_X86_64 |
|
c->apicid = apic->phys_pkg_id(c->initial_apicid, 0); |
|
#endif |
|
|
|
/* |
|
* Vendor-specific initialization. In this section we |
|
* canonicalize the feature flags, meaning if there are |
|
* features a certain CPU supports which CPUID doesn't |
|
* tell us, CPUID claiming incorrect flags, or other bugs, |
|
* we handle them here. |
|
* |
|
* At the end of this section, c->x86_capability better |
|
* indicate the features this CPU genuinely supports! |
|
*/ |
|
if (this_cpu->c_init) |
|
this_cpu->c_init(c); |
|
|
|
/* Disable the PN if appropriate */ |
|
squash_the_stupid_serial_number(c); |
|
|
|
/* |
|
* The vendor-specific functions might have changed features. |
|
* Now we do "generic changes." |
|
*/ |
|
|
|
/* Filter out anything that depends on CPUID levels we don't have */ |
|
filter_cpuid_features(c, true); |
|
|
|
/* If the model name is still unset, do table lookup. */ |
|
if (!c->x86_model_id[0]) { |
|
const char *p; |
|
p = table_lookup_model(c); |
|
if (p) |
|
strcpy(c->x86_model_id, p); |
|
else |
|
/* Last resort... */ |
|
sprintf(c->x86_model_id, "%02x/%02x", |
|
c->x86, c->x86_model); |
|
} |
|
|
|
#ifdef CONFIG_X86_64 |
|
detect_ht(c); |
|
#endif |
|
|
|
init_hypervisor(c); |
|
x86_init_rdrand(c); |
|
|
|
/* |
|
* Clear/Set all flags overriden by options, need do it |
|
* before following smp all cpus cap AND. |
|
*/ |
|
for (i = 0; i < NCAPINTS; i++) { |
|
c->x86_capability[i] &= ~cpu_caps_cleared[i]; |
|
c->x86_capability[i] |= cpu_caps_set[i]; |
|
} |
|
|
|
/* |
|
* On SMP, boot_cpu_data holds the common feature set between |
|
* all CPUs; so make sure that we indicate which features are |
|
* common between the CPUs. The first time this routine gets |
|
* executed, c == &boot_cpu_data. |
|
*/ |
|
if (c != &boot_cpu_data) { |
|
/* AND the already accumulated flags with these */ |
|
for (i = 0; i < NCAPINTS; i++) |
|
boot_cpu_data.x86_capability[i] &= c->x86_capability[i]; |
|
} |
|
|
|
/* Init Machine Check Exception if available. */ |
|
mcheck_cpu_init(c); |
|
|
|
select_idle_routine(c); |
|
|
|
#ifdef CONFIG_NUMA |
|
numa_add_cpu(smp_processor_id()); |
|
#endif |
|
} |
|
|
|
#ifdef CONFIG_X86_64 |
|
static void vgetcpu_set_mode(void) |
|
{ |
|
if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP)) |
|
vgetcpu_mode = VGETCPU_RDTSCP; |
|
else |
|
vgetcpu_mode = VGETCPU_LSL; |
|
} |
|
#endif |
|
|
|
void __init identify_boot_cpu(void) |
|
{ |
|
identify_cpu(&boot_cpu_data); |
|
init_amd_e400_c1e_mask(); |
|
#ifdef CONFIG_X86_32 |
|
sysenter_setup(); |
|
enable_sep_cpu(); |
|
#else |
|
vgetcpu_set_mode(); |
|
#endif |
|
} |
|
|
|
void __cpuinit identify_secondary_cpu(struct cpuinfo_x86 *c) |
|
{ |
|
BUG_ON(c == &boot_cpu_data); |
|
identify_cpu(c); |
|
#ifdef CONFIG_X86_32 |
|
enable_sep_cpu(); |
|
#endif |
|
mtrr_ap_init(); |
|
} |
|
|
|
struct msr_range { |
|
unsigned min; |
|
unsigned max; |
|
}; |
|
|
|
static const struct msr_range msr_range_array[] __cpuinitconst = { |
|
{ 0x00000000, 0x00000418}, |
|
{ 0xc0000000, 0xc000040b}, |
|
{ 0xc0010000, 0xc0010142}, |
|
{ 0xc0011000, 0xc001103b}, |
|
}; |
|
|
|
static void __cpuinit __print_cpu_msr(void) |
|
{ |
|
unsigned index_min, index_max; |
|
unsigned index; |
|
u64 val; |
|
int i; |
|
|
|
for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) { |
|
index_min = msr_range_array[i].min; |
|
index_max = msr_range_array[i].max; |
|
|
|
for (index = index_min; index < index_max; index++) { |
|
if (rdmsrl_amd_safe(index, &val)) |
|
continue; |
|
printk(KERN_INFO " MSR%08x: %016llx\n", index, val); |
|
} |
|
} |
|
} |
|
|
|
static int show_msr __cpuinitdata; |
|
|
|
static __init int setup_show_msr(char *arg) |
|
{ |
|
int num; |
|
|
|
get_option(&arg, &num); |
|
|
|
if (num > 0) |
|
show_msr = num; |
|
return 1; |
|
} |
|
__setup("show_msr=", setup_show_msr); |
|
|
|
static __init int setup_noclflush(char *arg) |
|
{ |
|
setup_clear_cpu_cap(X86_FEATURE_CLFLSH); |
|
return 1; |
|
} |
|
__setup("noclflush", setup_noclflush); |
|
|
|
void __cpuinit print_cpu_info(struct cpuinfo_x86 *c) |
|
{ |
|
const char *vendor = NULL; |
|
|
|
if (c->x86_vendor < X86_VENDOR_NUM) { |
|
vendor = this_cpu->c_vendor; |
|
} else { |
|
if (c->cpuid_level >= 0) |
|
vendor = c->x86_vendor_id; |
|
} |
|
|
|
if (vendor && !strstr(c->x86_model_id, vendor)) |
|
printk(KERN_CONT "%s ", vendor); |
|
|
|
if (c->x86_model_id[0]) |
|
printk(KERN_CONT "%s", c->x86_model_id); |
|
else |
|
printk(KERN_CONT "%d86", c->x86); |
|
|
|
if (c->x86_mask || c->cpuid_level >= 0) |
|
printk(KERN_CONT " stepping %02x\n", c->x86_mask); |
|
else |
|
printk(KERN_CONT "\n"); |
|
|
|
print_cpu_msr(c); |
|
} |
|
|
|
void __cpuinit print_cpu_msr(struct cpuinfo_x86 *c) |
|
{ |
|
if (c->cpu_index < show_msr) |
|
__print_cpu_msr(); |
|
} |
|
|
|
static __init int setup_disablecpuid(char *arg) |
|
{ |
|
int bit; |
|
|
|
if (get_option(&arg, &bit) && bit < NCAPINTS*32) |
|
setup_clear_cpu_cap(bit); |
|
else |
|
return 0; |
|
|
|
return 1; |
|
} |
|
__setup("clearcpuid=", setup_disablecpuid); |
|
|
|
#ifdef CONFIG_X86_64 |
|
struct desc_ptr idt_descr = { NR_VECTORS * 16 - 1, (unsigned long) idt_table }; |
|
struct desc_ptr nmi_idt_descr = { NR_VECTORS * 16 - 1, |
|
(unsigned long) nmi_idt_table }; |
|
|
|
DEFINE_PER_CPU_FIRST(union irq_stack_union, |
|
irq_stack_union) __aligned(PAGE_SIZE); |
|
|
|
/* |
|
* The following four percpu variables are hot. Align current_task to |
|
* cacheline size such that all four fall in the same cacheline. |
|
*/ |
|
DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned = |
|
&init_task; |
|
EXPORT_PER_CPU_SYMBOL(current_task); |
|
|
|
DEFINE_PER_CPU(unsigned long, kernel_stack) = |
|
(unsigned long)&init_thread_union - KERNEL_STACK_OFFSET + THREAD_SIZE; |
|
EXPORT_PER_CPU_SYMBOL(kernel_stack); |
|
|
|
DEFINE_PER_CPU(char *, irq_stack_ptr) = |
|
init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64; |
|
|
|
DEFINE_PER_CPU(unsigned int, irq_count) = -1; |
|
|
|
DEFINE_PER_CPU(struct task_struct *, fpu_owner_task); |
|
|
|
/* |
|
* Special IST stacks which the CPU switches to when it calls |
|
* an IST-marked descriptor entry. Up to 7 stacks (hardware |
|
* limit), all of them are 4K, except the debug stack which |
|
* is 8K. |
|
*/ |
|
static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = { |
|
[0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ, |
|
[DEBUG_STACK - 1] = DEBUG_STKSZ |
|
}; |
|
|
|
static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks |
|
[(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]); |
|
|
|
/* May not be marked __init: used by software suspend */ |
|
void syscall_init(void) |
|
{ |
|
/* |
|
* LSTAR and STAR live in a bit strange symbiosis. |
|
* They both write to the same internal register. STAR allows to |
|
* set CS/DS but only a 32bit target. LSTAR sets the 64bit rip. |
|
*/ |
|
wrmsrl(MSR_STAR, ((u64)__USER32_CS)<<48 | ((u64)__KERNEL_CS)<<32); |
|
wrmsrl(MSR_LSTAR, system_call); |
|
wrmsrl(MSR_CSTAR, ignore_sysret); |
|
|
|
#ifdef CONFIG_IA32_EMULATION |
|
syscall32_cpu_init(); |
|
#endif |
|
|
|
/* Flags to clear on syscall */ |
|
wrmsrl(MSR_SYSCALL_MASK, |
|
X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|X86_EFLAGS_IOPL); |
|
} |
|
|
|
unsigned long kernel_eflags; |
|
|
|
/* |
|
* Copies of the original ist values from the tss are only accessed during |
|
* debugging, no special alignment required. |
|
*/ |
|
DEFINE_PER_CPU(struct orig_ist, orig_ist); |
|
|
|
static DEFINE_PER_CPU(unsigned long, debug_stack_addr); |
|
DEFINE_PER_CPU(int, debug_stack_usage); |
|
|
|
int is_debug_stack(unsigned long addr) |
|
{ |
|
return __get_cpu_var(debug_stack_usage) || |
|
(addr <= __get_cpu_var(debug_stack_addr) && |
|
addr > (__get_cpu_var(debug_stack_addr) - DEBUG_STKSZ)); |
|
} |
|
|
|
void debug_stack_set_zero(void) |
|
{ |
|
load_idt((const struct desc_ptr *)&nmi_idt_descr); |
|
} |
|
|
|
void debug_stack_reset(void) |
|
{ |
|
load_idt((const struct desc_ptr *)&idt_descr); |
|
} |
|
|
|
#else /* CONFIG_X86_64 */ |
|
|
|
DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task; |
|
EXPORT_PER_CPU_SYMBOL(current_task); |
|
DEFINE_PER_CPU(struct task_struct *, fpu_owner_task); |
|
|
|
#ifdef CONFIG_CC_STACKPROTECTOR |
|
DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary); |
|
#endif |
|
|
|
/* Make sure %fs and %gs are initialized properly in idle threads */ |
|
struct pt_regs * __cpuinit idle_regs(struct pt_regs *regs) |
|
{ |
|
memset(regs, 0, sizeof(struct pt_regs)); |
|
regs->fs = __KERNEL_PERCPU; |
|
regs->gs = __KERNEL_STACK_CANARY; |
|
|
|
return regs; |
|
} |
|
#endif /* CONFIG_X86_64 */ |
|
|
|
/* |
|
* Clear all 6 debug registers: |
|
*/ |
|
static void clear_all_debug_regs(void) |
|
{ |
|
int i; |
|
|
|
for (i = 0; i < 8; i++) { |
|
/* Ignore db4, db5 */ |
|
if ((i == 4) || (i == 5)) |
|
continue; |
|
|
|
set_debugreg(0, i); |
|
} |
|
} |
|
|
|
#ifdef CONFIG_KGDB |
|
/* |
|
* Restore debug regs if using kgdbwait and you have a kernel debugger |
|
* connection established. |
|
*/ |
|
static void dbg_restore_debug_regs(void) |
|
{ |
|
if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break)) |
|
arch_kgdb_ops.correct_hw_break(); |
|
} |
|
#else /* ! CONFIG_KGDB */ |
|
#define dbg_restore_debug_regs() |
|
#endif /* ! CONFIG_KGDB */ |
|
|
|
/* |
|
* Prints an error where the NUMA and configured core-number mismatch and the |
|
* platform didn't override this to fix it up |
|
*/ |
|
void __cpuinit x86_default_fixup_cpu_id(struct cpuinfo_x86 *c, int node) |
|
{ |
|
pr_err("NUMA core number %d differs from configured core number %d\n", node, c->phys_proc_id); |
|
} |
|
|
|
/* |
|
* cpu_init() initializes state that is per-CPU. Some data is already |
|
* initialized (naturally) in the bootstrap process, such as the GDT |
|
* and IDT. We reload them nevertheless, this function acts as a |
|
* 'CPU state barrier', nothing should get across. |
|
* A lot of state is already set up in PDA init for 64 bit |
|
*/ |
|
#ifdef CONFIG_X86_64 |
|
|
|
void __cpuinit cpu_init(void) |
|
{ |
|
struct orig_ist *oist; |
|
struct task_struct *me; |
|
struct tss_struct *t; |
|
unsigned long v; |
|
int cpu; |
|
int i; |
|
|
|
cpu = stack_smp_processor_id(); |
|
t = &per_cpu(init_tss, cpu); |
|
oist = &per_cpu(orig_ist, cpu); |
|
|
|
#ifdef CONFIG_NUMA |
|
if (cpu != 0 && percpu_read(numa_node) == 0 && |
|
early_cpu_to_node(cpu) != NUMA_NO_NODE) |
|
set_numa_node(early_cpu_to_node(cpu)); |
|
#endif |
|
|
|
me = current; |
|
|
|
if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask)) |
|
panic("CPU#%d already initialized!\n", cpu); |
|
|
|
pr_debug("Initializing CPU#%d\n", cpu); |
|
|
|
clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE); |
|
|
|
/* |
|
* Initialize the per-CPU GDT with the boot GDT, |
|
* and set up the GDT descriptor: |
|
*/ |
|
|
|
switch_to_new_gdt(cpu); |
|
loadsegment(fs, 0); |
|
|
|
load_idt((const struct desc_ptr *)&idt_descr); |
|
|
|
memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8); |
|
syscall_init(); |
|
|
|
wrmsrl(MSR_FS_BASE, 0); |
|
wrmsrl(MSR_KERNEL_GS_BASE, 0); |
|
barrier(); |
|
|
|
x86_configure_nx(); |
|
if (cpu != 0) |
|
enable_x2apic(); |
|
|
|
/* |
|
* set up and load the per-CPU TSS |
|
*/ |
|
if (!oist->ist[0]) { |
|
char *estacks = per_cpu(exception_stacks, cpu); |
|
|
|
for (v = 0; v < N_EXCEPTION_STACKS; v++) { |
|
estacks += exception_stack_sizes[v]; |
|
oist->ist[v] = t->x86_tss.ist[v] = |
|
(unsigned long)estacks; |
|
if (v == DEBUG_STACK-1) |
|
per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks; |
|
} |
|
} |
|
|
|
t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap); |
|
|
|
/* |
|
* <= is required because the CPU will access up to |
|
* 8 bits beyond the end of the IO permission bitmap. |
|
*/ |
|
for (i = 0; i <= IO_BITMAP_LONGS; i++) |
|
t->io_bitmap[i] = ~0UL; |
|
|
|
atomic_inc(&init_mm.mm_count); |
|
me->active_mm = &init_mm; |
|
BUG_ON(me->mm); |
|
enter_lazy_tlb(&init_mm, me); |
|
|
|
load_sp0(t, ¤t->thread); |
|
set_tss_desc(cpu, t); |
|
load_TR_desc(); |
|
load_LDT(&init_mm.context); |
|
|
|
clear_all_debug_regs(); |
|
dbg_restore_debug_regs(); |
|
|
|
fpu_init(); |
|
xsave_init(); |
|
|
|
raw_local_save_flags(kernel_eflags); |
|
|
|
if (is_uv_system()) |
|
uv_cpu_init(); |
|
} |
|
|
|
#else |
|
|
|
void __cpuinit cpu_init(void) |
|
{ |
|
int cpu = smp_processor_id(); |
|
struct task_struct *curr = current; |
|
struct tss_struct *t = &per_cpu(init_tss, cpu); |
|
struct thread_struct *thread = &curr->thread; |
|
|
|
if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask)) { |
|
printk(KERN_WARNING "CPU#%d already initialized!\n", cpu); |
|
for (;;) |
|
local_irq_enable(); |
|
} |
|
|
|
printk(KERN_INFO "Initializing CPU#%d\n", cpu); |
|
|
|
if (cpu_has_vme || cpu_has_tsc || cpu_has_de) |
|
clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE); |
|
|
|
load_idt(&idt_descr); |
|
switch_to_new_gdt(cpu); |
|
|
|
/* |
|
* Set up and load the per-CPU TSS and LDT |
|
*/ |
|
atomic_inc(&init_mm.mm_count); |
|
curr->active_mm = &init_mm; |
|
BUG_ON(curr->mm); |
|
enter_lazy_tlb(&init_mm, curr); |
|
|
|
load_sp0(t, thread); |
|
set_tss_desc(cpu, t); |
|
load_TR_desc(); |
|
load_LDT(&init_mm.context); |
|
|
|
t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap); |
|
|
|
#ifdef CONFIG_DOUBLEFAULT |
|
/* Set up doublefault TSS pointer in the GDT */ |
|
__set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss); |
|
#endif |
|
|
|
clear_all_debug_regs(); |
|
dbg_restore_debug_regs(); |
|
|
|
fpu_init(); |
|
xsave_init(); |
|
} |
|
#endif
|
|
|