You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
3111 lines
97 KiB
3111 lines
97 KiB
/** |
|
* inode.c - NTFS kernel inode handling. Part of the Linux-NTFS project. |
|
* |
|
* Copyright (c) 2001-2007 Anton Altaparmakov |
|
* |
|
* This program/include file is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU General Public License as published |
|
* by the Free Software Foundation; either version 2 of the License, or |
|
* (at your option) any later version. |
|
* |
|
* This program/include file is distributed in the hope that it will be |
|
* useful, but WITHOUT ANY WARRANTY; without even the implied warranty |
|
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
* GNU General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU General Public License |
|
* along with this program (in the main directory of the Linux-NTFS |
|
* distribution in the file COPYING); if not, write to the Free Software |
|
* Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
|
*/ |
|
|
|
#include <linux/buffer_head.h> |
|
#include <linux/fs.h> |
|
#include <linux/mm.h> |
|
#include <linux/mount.h> |
|
#include <linux/mutex.h> |
|
#include <linux/pagemap.h> |
|
#include <linux/quotaops.h> |
|
#include <linux/slab.h> |
|
#include <linux/log2.h> |
|
#include <linux/aio.h> |
|
|
|
#include "aops.h" |
|
#include "attrib.h" |
|
#include "bitmap.h" |
|
#include "dir.h" |
|
#include "debug.h" |
|
#include "inode.h" |
|
#include "lcnalloc.h" |
|
#include "malloc.h" |
|
#include "mft.h" |
|
#include "time.h" |
|
#include "ntfs.h" |
|
|
|
/** |
|
* ntfs_test_inode - compare two (possibly fake) inodes for equality |
|
* @vi: vfs inode which to test |
|
* @na: ntfs attribute which is being tested with |
|
* |
|
* Compare the ntfs attribute embedded in the ntfs specific part of the vfs |
|
* inode @vi for equality with the ntfs attribute @na. |
|
* |
|
* If searching for the normal file/directory inode, set @na->type to AT_UNUSED. |
|
* @na->name and @na->name_len are then ignored. |
|
* |
|
* Return 1 if the attributes match and 0 if not. |
|
* |
|
* NOTE: This function runs with the inode_hash_lock spin lock held so it is not |
|
* allowed to sleep. |
|
*/ |
|
int ntfs_test_inode(struct inode *vi, ntfs_attr *na) |
|
{ |
|
ntfs_inode *ni; |
|
|
|
if (vi->i_ino != na->mft_no) |
|
return 0; |
|
ni = NTFS_I(vi); |
|
/* If !NInoAttr(ni), @vi is a normal file or directory inode. */ |
|
if (likely(!NInoAttr(ni))) { |
|
/* If not looking for a normal inode this is a mismatch. */ |
|
if (unlikely(na->type != AT_UNUSED)) |
|
return 0; |
|
} else { |
|
/* A fake inode describing an attribute. */ |
|
if (ni->type != na->type) |
|
return 0; |
|
if (ni->name_len != na->name_len) |
|
return 0; |
|
if (na->name_len && memcmp(ni->name, na->name, |
|
na->name_len * sizeof(ntfschar))) |
|
return 0; |
|
} |
|
/* Match! */ |
|
return 1; |
|
} |
|
|
|
/** |
|
* ntfs_init_locked_inode - initialize an inode |
|
* @vi: vfs inode to initialize |
|
* @na: ntfs attribute which to initialize @vi to |
|
* |
|
* Initialize the vfs inode @vi with the values from the ntfs attribute @na in |
|
* order to enable ntfs_test_inode() to do its work. |
|
* |
|
* If initializing the normal file/directory inode, set @na->type to AT_UNUSED. |
|
* In that case, @na->name and @na->name_len should be set to NULL and 0, |
|
* respectively. Although that is not strictly necessary as |
|
* ntfs_read_locked_inode() will fill them in later. |
|
* |
|
* Return 0 on success and -errno on error. |
|
* |
|
* NOTE: This function runs with the inode->i_lock spin lock held so it is not |
|
* allowed to sleep. (Hence the GFP_ATOMIC allocation.) |
|
*/ |
|
static int ntfs_init_locked_inode(struct inode *vi, ntfs_attr *na) |
|
{ |
|
ntfs_inode *ni = NTFS_I(vi); |
|
|
|
vi->i_ino = na->mft_no; |
|
|
|
ni->type = na->type; |
|
if (na->type == AT_INDEX_ALLOCATION) |
|
NInoSetMstProtected(ni); |
|
|
|
ni->name = na->name; |
|
ni->name_len = na->name_len; |
|
|
|
/* If initializing a normal inode, we are done. */ |
|
if (likely(na->type == AT_UNUSED)) { |
|
BUG_ON(na->name); |
|
BUG_ON(na->name_len); |
|
return 0; |
|
} |
|
|
|
/* It is a fake inode. */ |
|
NInoSetAttr(ni); |
|
|
|
/* |
|
* We have I30 global constant as an optimization as it is the name |
|
* in >99.9% of named attributes! The other <0.1% incur a GFP_ATOMIC |
|
* allocation but that is ok. And most attributes are unnamed anyway, |
|
* thus the fraction of named attributes with name != I30 is actually |
|
* absolutely tiny. |
|
*/ |
|
if (na->name_len && na->name != I30) { |
|
unsigned int i; |
|
|
|
BUG_ON(!na->name); |
|
i = na->name_len * sizeof(ntfschar); |
|
ni->name = kmalloc(i + sizeof(ntfschar), GFP_ATOMIC); |
|
if (!ni->name) |
|
return -ENOMEM; |
|
memcpy(ni->name, na->name, i); |
|
ni->name[na->name_len] = 0; |
|
} |
|
return 0; |
|
} |
|
|
|
typedef int (*set_t)(struct inode *, void *); |
|
static int ntfs_read_locked_inode(struct inode *vi); |
|
static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi); |
|
static int ntfs_read_locked_index_inode(struct inode *base_vi, |
|
struct inode *vi); |
|
|
|
/** |
|
* ntfs_iget - obtain a struct inode corresponding to a specific normal inode |
|
* @sb: super block of mounted volume |
|
* @mft_no: mft record number / inode number to obtain |
|
* |
|
* Obtain the struct inode corresponding to a specific normal inode (i.e. a |
|
* file or directory). |
|
* |
|
* If the inode is in the cache, it is just returned with an increased |
|
* reference count. Otherwise, a new struct inode is allocated and initialized, |
|
* and finally ntfs_read_locked_inode() is called to read in the inode and |
|
* fill in the remainder of the inode structure. |
|
* |
|
* Return the struct inode on success. Check the return value with IS_ERR() and |
|
* if true, the function failed and the error code is obtained from PTR_ERR(). |
|
*/ |
|
struct inode *ntfs_iget(struct super_block *sb, unsigned long mft_no) |
|
{ |
|
struct inode *vi; |
|
int err; |
|
ntfs_attr na; |
|
|
|
na.mft_no = mft_no; |
|
na.type = AT_UNUSED; |
|
na.name = NULL; |
|
na.name_len = 0; |
|
|
|
vi = iget5_locked(sb, mft_no, (test_t)ntfs_test_inode, |
|
(set_t)ntfs_init_locked_inode, &na); |
|
if (unlikely(!vi)) |
|
return ERR_PTR(-ENOMEM); |
|
|
|
err = 0; |
|
|
|
/* If this is a freshly allocated inode, need to read it now. */ |
|
if (vi->i_state & I_NEW) { |
|
err = ntfs_read_locked_inode(vi); |
|
unlock_new_inode(vi); |
|
} |
|
/* |
|
* There is no point in keeping bad inodes around if the failure was |
|
* due to ENOMEM. We want to be able to retry again later. |
|
*/ |
|
if (unlikely(err == -ENOMEM)) { |
|
iput(vi); |
|
vi = ERR_PTR(err); |
|
} |
|
return vi; |
|
} |
|
|
|
/** |
|
* ntfs_attr_iget - obtain a struct inode corresponding to an attribute |
|
* @base_vi: vfs base inode containing the attribute |
|
* @type: attribute type |
|
* @name: Unicode name of the attribute (NULL if unnamed) |
|
* @name_len: length of @name in Unicode characters (0 if unnamed) |
|
* |
|
* Obtain the (fake) struct inode corresponding to the attribute specified by |
|
* @type, @name, and @name_len, which is present in the base mft record |
|
* specified by the vfs inode @base_vi. |
|
* |
|
* If the attribute inode is in the cache, it is just returned with an |
|
* increased reference count. Otherwise, a new struct inode is allocated and |
|
* initialized, and finally ntfs_read_locked_attr_inode() is called to read the |
|
* attribute and fill in the inode structure. |
|
* |
|
* Note, for index allocation attributes, you need to use ntfs_index_iget() |
|
* instead of ntfs_attr_iget() as working with indices is a lot more complex. |
|
* |
|
* Return the struct inode of the attribute inode on success. Check the return |
|
* value with IS_ERR() and if true, the function failed and the error code is |
|
* obtained from PTR_ERR(). |
|
*/ |
|
struct inode *ntfs_attr_iget(struct inode *base_vi, ATTR_TYPE type, |
|
ntfschar *name, u32 name_len) |
|
{ |
|
struct inode *vi; |
|
int err; |
|
ntfs_attr na; |
|
|
|
/* Make sure no one calls ntfs_attr_iget() for indices. */ |
|
BUG_ON(type == AT_INDEX_ALLOCATION); |
|
|
|
na.mft_no = base_vi->i_ino; |
|
na.type = type; |
|
na.name = name; |
|
na.name_len = name_len; |
|
|
|
vi = iget5_locked(base_vi->i_sb, na.mft_no, (test_t)ntfs_test_inode, |
|
(set_t)ntfs_init_locked_inode, &na); |
|
if (unlikely(!vi)) |
|
return ERR_PTR(-ENOMEM); |
|
|
|
err = 0; |
|
|
|
/* If this is a freshly allocated inode, need to read it now. */ |
|
if (vi->i_state & I_NEW) { |
|
err = ntfs_read_locked_attr_inode(base_vi, vi); |
|
unlock_new_inode(vi); |
|
} |
|
/* |
|
* There is no point in keeping bad attribute inodes around. This also |
|
* simplifies things in that we never need to check for bad attribute |
|
* inodes elsewhere. |
|
*/ |
|
if (unlikely(err)) { |
|
iput(vi); |
|
vi = ERR_PTR(err); |
|
} |
|
return vi; |
|
} |
|
|
|
/** |
|
* ntfs_index_iget - obtain a struct inode corresponding to an index |
|
* @base_vi: vfs base inode containing the index related attributes |
|
* @name: Unicode name of the index |
|
* @name_len: length of @name in Unicode characters |
|
* |
|
* Obtain the (fake) struct inode corresponding to the index specified by @name |
|
* and @name_len, which is present in the base mft record specified by the vfs |
|
* inode @base_vi. |
|
* |
|
* If the index inode is in the cache, it is just returned with an increased |
|
* reference count. Otherwise, a new struct inode is allocated and |
|
* initialized, and finally ntfs_read_locked_index_inode() is called to read |
|
* the index related attributes and fill in the inode structure. |
|
* |
|
* Return the struct inode of the index inode on success. Check the return |
|
* value with IS_ERR() and if true, the function failed and the error code is |
|
* obtained from PTR_ERR(). |
|
*/ |
|
struct inode *ntfs_index_iget(struct inode *base_vi, ntfschar *name, |
|
u32 name_len) |
|
{ |
|
struct inode *vi; |
|
int err; |
|
ntfs_attr na; |
|
|
|
na.mft_no = base_vi->i_ino; |
|
na.type = AT_INDEX_ALLOCATION; |
|
na.name = name; |
|
na.name_len = name_len; |
|
|
|
vi = iget5_locked(base_vi->i_sb, na.mft_no, (test_t)ntfs_test_inode, |
|
(set_t)ntfs_init_locked_inode, &na); |
|
if (unlikely(!vi)) |
|
return ERR_PTR(-ENOMEM); |
|
|
|
err = 0; |
|
|
|
/* If this is a freshly allocated inode, need to read it now. */ |
|
if (vi->i_state & I_NEW) { |
|
err = ntfs_read_locked_index_inode(base_vi, vi); |
|
unlock_new_inode(vi); |
|
} |
|
/* |
|
* There is no point in keeping bad index inodes around. This also |
|
* simplifies things in that we never need to check for bad index |
|
* inodes elsewhere. |
|
*/ |
|
if (unlikely(err)) { |
|
iput(vi); |
|
vi = ERR_PTR(err); |
|
} |
|
return vi; |
|
} |
|
|
|
struct inode *ntfs_alloc_big_inode(struct super_block *sb) |
|
{ |
|
ntfs_inode *ni; |
|
|
|
ntfs_debug("Entering."); |
|
ni = kmem_cache_alloc(ntfs_big_inode_cache, GFP_NOFS); |
|
if (likely(ni != NULL)) { |
|
ni->state = 0; |
|
return VFS_I(ni); |
|
} |
|
ntfs_error(sb, "Allocation of NTFS big inode structure failed."); |
|
return NULL; |
|
} |
|
|
|
static void ntfs_i_callback(struct rcu_head *head) |
|
{ |
|
struct inode *inode = container_of(head, struct inode, i_rcu); |
|
kmem_cache_free(ntfs_big_inode_cache, NTFS_I(inode)); |
|
} |
|
|
|
void ntfs_destroy_big_inode(struct inode *inode) |
|
{ |
|
ntfs_inode *ni = NTFS_I(inode); |
|
|
|
ntfs_debug("Entering."); |
|
BUG_ON(ni->page); |
|
if (!atomic_dec_and_test(&ni->count)) |
|
BUG(); |
|
call_rcu(&inode->i_rcu, ntfs_i_callback); |
|
} |
|
|
|
static inline ntfs_inode *ntfs_alloc_extent_inode(void) |
|
{ |
|
ntfs_inode *ni; |
|
|
|
ntfs_debug("Entering."); |
|
ni = kmem_cache_alloc(ntfs_inode_cache, GFP_NOFS); |
|
if (likely(ni != NULL)) { |
|
ni->state = 0; |
|
return ni; |
|
} |
|
ntfs_error(NULL, "Allocation of NTFS inode structure failed."); |
|
return NULL; |
|
} |
|
|
|
static void ntfs_destroy_extent_inode(ntfs_inode *ni) |
|
{ |
|
ntfs_debug("Entering."); |
|
BUG_ON(ni->page); |
|
if (!atomic_dec_and_test(&ni->count)) |
|
BUG(); |
|
kmem_cache_free(ntfs_inode_cache, ni); |
|
} |
|
|
|
/* |
|
* The attribute runlist lock has separate locking rules from the |
|
* normal runlist lock, so split the two lock-classes: |
|
*/ |
|
static struct lock_class_key attr_list_rl_lock_class; |
|
|
|
/** |
|
* __ntfs_init_inode - initialize ntfs specific part of an inode |
|
* @sb: super block of mounted volume |
|
* @ni: freshly allocated ntfs inode which to initialize |
|
* |
|
* Initialize an ntfs inode to defaults. |
|
* |
|
* NOTE: ni->mft_no, ni->state, ni->type, ni->name, and ni->name_len are left |
|
* untouched. Make sure to initialize them elsewhere. |
|
* |
|
* Return zero on success and -ENOMEM on error. |
|
*/ |
|
void __ntfs_init_inode(struct super_block *sb, ntfs_inode *ni) |
|
{ |
|
ntfs_debug("Entering."); |
|
rwlock_init(&ni->size_lock); |
|
ni->initialized_size = ni->allocated_size = 0; |
|
ni->seq_no = 0; |
|
atomic_set(&ni->count, 1); |
|
ni->vol = NTFS_SB(sb); |
|
ntfs_init_runlist(&ni->runlist); |
|
mutex_init(&ni->mrec_lock); |
|
ni->page = NULL; |
|
ni->page_ofs = 0; |
|
ni->attr_list_size = 0; |
|
ni->attr_list = NULL; |
|
ntfs_init_runlist(&ni->attr_list_rl); |
|
lockdep_set_class(&ni->attr_list_rl.lock, |
|
&attr_list_rl_lock_class); |
|
ni->itype.index.block_size = 0; |
|
ni->itype.index.vcn_size = 0; |
|
ni->itype.index.collation_rule = 0; |
|
ni->itype.index.block_size_bits = 0; |
|
ni->itype.index.vcn_size_bits = 0; |
|
mutex_init(&ni->extent_lock); |
|
ni->nr_extents = 0; |
|
ni->ext.base_ntfs_ino = NULL; |
|
} |
|
|
|
/* |
|
* Extent inodes get MFT-mapped in a nested way, while the base inode |
|
* is still mapped. Teach this nesting to the lock validator by creating |
|
* a separate class for nested inode's mrec_lock's: |
|
*/ |
|
static struct lock_class_key extent_inode_mrec_lock_key; |
|
|
|
inline ntfs_inode *ntfs_new_extent_inode(struct super_block *sb, |
|
unsigned long mft_no) |
|
{ |
|
ntfs_inode *ni = ntfs_alloc_extent_inode(); |
|
|
|
ntfs_debug("Entering."); |
|
if (likely(ni != NULL)) { |
|
__ntfs_init_inode(sb, ni); |
|
lockdep_set_class(&ni->mrec_lock, &extent_inode_mrec_lock_key); |
|
ni->mft_no = mft_no; |
|
ni->type = AT_UNUSED; |
|
ni->name = NULL; |
|
ni->name_len = 0; |
|
} |
|
return ni; |
|
} |
|
|
|
/** |
|
* ntfs_is_extended_system_file - check if a file is in the $Extend directory |
|
* @ctx: initialized attribute search context |
|
* |
|
* Search all file name attributes in the inode described by the attribute |
|
* search context @ctx and check if any of the names are in the $Extend system |
|
* directory. |
|
* |
|
* Return values: |
|
* 1: file is in $Extend directory |
|
* 0: file is not in $Extend directory |
|
* -errno: failed to determine if the file is in the $Extend directory |
|
*/ |
|
static int ntfs_is_extended_system_file(ntfs_attr_search_ctx *ctx) |
|
{ |
|
int nr_links, err; |
|
|
|
/* Restart search. */ |
|
ntfs_attr_reinit_search_ctx(ctx); |
|
|
|
/* Get number of hard links. */ |
|
nr_links = le16_to_cpu(ctx->mrec->link_count); |
|
|
|
/* Loop through all hard links. */ |
|
while (!(err = ntfs_attr_lookup(AT_FILE_NAME, NULL, 0, 0, 0, NULL, 0, |
|
ctx))) { |
|
FILE_NAME_ATTR *file_name_attr; |
|
ATTR_RECORD *attr = ctx->attr; |
|
u8 *p, *p2; |
|
|
|
nr_links--; |
|
/* |
|
* Maximum sanity checking as we are called on an inode that |
|
* we suspect might be corrupt. |
|
*/ |
|
p = (u8*)attr + le32_to_cpu(attr->length); |
|
if (p < (u8*)ctx->mrec || (u8*)p > (u8*)ctx->mrec + |
|
le32_to_cpu(ctx->mrec->bytes_in_use)) { |
|
err_corrupt_attr: |
|
ntfs_error(ctx->ntfs_ino->vol->sb, "Corrupt file name " |
|
"attribute. You should run chkdsk."); |
|
return -EIO; |
|
} |
|
if (attr->non_resident) { |
|
ntfs_error(ctx->ntfs_ino->vol->sb, "Non-resident file " |
|
"name. You should run chkdsk."); |
|
return -EIO; |
|
} |
|
if (attr->flags) { |
|
ntfs_error(ctx->ntfs_ino->vol->sb, "File name with " |
|
"invalid flags. You should run " |
|
"chkdsk."); |
|
return -EIO; |
|
} |
|
if (!(attr->data.resident.flags & RESIDENT_ATTR_IS_INDEXED)) { |
|
ntfs_error(ctx->ntfs_ino->vol->sb, "Unindexed file " |
|
"name. You should run chkdsk."); |
|
return -EIO; |
|
} |
|
file_name_attr = (FILE_NAME_ATTR*)((u8*)attr + |
|
le16_to_cpu(attr->data.resident.value_offset)); |
|
p2 = (u8*)attr + le32_to_cpu(attr->data.resident.value_length); |
|
if (p2 < (u8*)attr || p2 > p) |
|
goto err_corrupt_attr; |
|
/* This attribute is ok, but is it in the $Extend directory? */ |
|
if (MREF_LE(file_name_attr->parent_directory) == FILE_Extend) |
|
return 1; /* YES, it's an extended system file. */ |
|
} |
|
if (unlikely(err != -ENOENT)) |
|
return err; |
|
if (unlikely(nr_links)) { |
|
ntfs_error(ctx->ntfs_ino->vol->sb, "Inode hard link count " |
|
"doesn't match number of name attributes. You " |
|
"should run chkdsk."); |
|
return -EIO; |
|
} |
|
return 0; /* NO, it is not an extended system file. */ |
|
} |
|
|
|
/** |
|
* ntfs_read_locked_inode - read an inode from its device |
|
* @vi: inode to read |
|
* |
|
* ntfs_read_locked_inode() is called from ntfs_iget() to read the inode |
|
* described by @vi into memory from the device. |
|
* |
|
* The only fields in @vi that we need to/can look at when the function is |
|
* called are i_sb, pointing to the mounted device's super block, and i_ino, |
|
* the number of the inode to load. |
|
* |
|
* ntfs_read_locked_inode() maps, pins and locks the mft record number i_ino |
|
* for reading and sets up the necessary @vi fields as well as initializing |
|
* the ntfs inode. |
|
* |
|
* Q: What locks are held when the function is called? |
|
* A: i_state has I_NEW set, hence the inode is locked, also |
|
* i_count is set to 1, so it is not going to go away |
|
* i_flags is set to 0 and we have no business touching it. Only an ioctl() |
|
* is allowed to write to them. We should of course be honouring them but |
|
* we need to do that using the IS_* macros defined in include/linux/fs.h. |
|
* In any case ntfs_read_locked_inode() has nothing to do with i_flags. |
|
* |
|
* Return 0 on success and -errno on error. In the error case, the inode will |
|
* have had make_bad_inode() executed on it. |
|
*/ |
|
static int ntfs_read_locked_inode(struct inode *vi) |
|
{ |
|
ntfs_volume *vol = NTFS_SB(vi->i_sb); |
|
ntfs_inode *ni; |
|
struct inode *bvi; |
|
MFT_RECORD *m; |
|
ATTR_RECORD *a; |
|
STANDARD_INFORMATION *si; |
|
ntfs_attr_search_ctx *ctx; |
|
int err = 0; |
|
|
|
ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino); |
|
|
|
/* Setup the generic vfs inode parts now. */ |
|
|
|
/* |
|
* This is for checking whether an inode has changed w.r.t. a file so |
|
* that the file can be updated if necessary (compare with f_version). |
|
*/ |
|
vi->i_version = 1; |
|
|
|
vi->i_uid = vol->uid; |
|
vi->i_gid = vol->gid; |
|
vi->i_mode = 0; |
|
|
|
/* |
|
* Initialize the ntfs specific part of @vi special casing |
|
* FILE_MFT which we need to do at mount time. |
|
*/ |
|
if (vi->i_ino != FILE_MFT) |
|
ntfs_init_big_inode(vi); |
|
ni = NTFS_I(vi); |
|
|
|
m = map_mft_record(ni); |
|
if (IS_ERR(m)) { |
|
err = PTR_ERR(m); |
|
goto err_out; |
|
} |
|
ctx = ntfs_attr_get_search_ctx(ni, m); |
|
if (!ctx) { |
|
err = -ENOMEM; |
|
goto unm_err_out; |
|
} |
|
|
|
if (!(m->flags & MFT_RECORD_IN_USE)) { |
|
ntfs_error(vi->i_sb, "Inode is not in use!"); |
|
goto unm_err_out; |
|
} |
|
if (m->base_mft_record) { |
|
ntfs_error(vi->i_sb, "Inode is an extent inode!"); |
|
goto unm_err_out; |
|
} |
|
|
|
/* Transfer information from mft record into vfs and ntfs inodes. */ |
|
vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number); |
|
|
|
/* |
|
* FIXME: Keep in mind that link_count is two for files which have both |
|
* a long file name and a short file name as separate entries, so if |
|
* we are hiding short file names this will be too high. Either we need |
|
* to account for the short file names by subtracting them or we need |
|
* to make sure we delete files even though i_nlink is not zero which |
|
* might be tricky due to vfs interactions. Need to think about this |
|
* some more when implementing the unlink command. |
|
*/ |
|
set_nlink(vi, le16_to_cpu(m->link_count)); |
|
/* |
|
* FIXME: Reparse points can have the directory bit set even though |
|
* they would be S_IFLNK. Need to deal with this further below when we |
|
* implement reparse points / symbolic links but it will do for now. |
|
* Also if not a directory, it could be something else, rather than |
|
* a regular file. But again, will do for now. |
|
*/ |
|
/* Everyone gets all permissions. */ |
|
vi->i_mode |= S_IRWXUGO; |
|
/* If read-only, no one gets write permissions. */ |
|
if (IS_RDONLY(vi)) |
|
vi->i_mode &= ~S_IWUGO; |
|
if (m->flags & MFT_RECORD_IS_DIRECTORY) { |
|
vi->i_mode |= S_IFDIR; |
|
/* |
|
* Apply the directory permissions mask set in the mount |
|
* options. |
|
*/ |
|
vi->i_mode &= ~vol->dmask; |
|
/* Things break without this kludge! */ |
|
if (vi->i_nlink > 1) |
|
set_nlink(vi, 1); |
|
} else { |
|
vi->i_mode |= S_IFREG; |
|
/* Apply the file permissions mask set in the mount options. */ |
|
vi->i_mode &= ~vol->fmask; |
|
} |
|
/* |
|
* Find the standard information attribute in the mft record. At this |
|
* stage we haven't setup the attribute list stuff yet, so this could |
|
* in fact fail if the standard information is in an extent record, but |
|
* I don't think this actually ever happens. |
|
*/ |
|
err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0, 0, 0, NULL, 0, |
|
ctx); |
|
if (unlikely(err)) { |
|
if (err == -ENOENT) { |
|
/* |
|
* TODO: We should be performing a hot fix here (if the |
|
* recover mount option is set) by creating a new |
|
* attribute. |
|
*/ |
|
ntfs_error(vi->i_sb, "$STANDARD_INFORMATION attribute " |
|
"is missing."); |
|
} |
|
goto unm_err_out; |
|
} |
|
a = ctx->attr; |
|
/* Get the standard information attribute value. */ |
|
si = (STANDARD_INFORMATION*)((u8*)a + |
|
le16_to_cpu(a->data.resident.value_offset)); |
|
|
|
/* Transfer information from the standard information into vi. */ |
|
/* |
|
* Note: The i_?times do not quite map perfectly onto the NTFS times, |
|
* but they are close enough, and in the end it doesn't really matter |
|
* that much... |
|
*/ |
|
/* |
|
* mtime is the last change of the data within the file. Not changed |
|
* when only metadata is changed, e.g. a rename doesn't affect mtime. |
|
*/ |
|
vi->i_mtime = ntfs2utc(si->last_data_change_time); |
|
/* |
|
* ctime is the last change of the metadata of the file. This obviously |
|
* always changes, when mtime is changed. ctime can be changed on its |
|
* own, mtime is then not changed, e.g. when a file is renamed. |
|
*/ |
|
vi->i_ctime = ntfs2utc(si->last_mft_change_time); |
|
/* |
|
* Last access to the data within the file. Not changed during a rename |
|
* for example but changed whenever the file is written to. |
|
*/ |
|
vi->i_atime = ntfs2utc(si->last_access_time); |
|
|
|
/* Find the attribute list attribute if present. */ |
|
ntfs_attr_reinit_search_ctx(ctx); |
|
err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx); |
|
if (err) { |
|
if (unlikely(err != -ENOENT)) { |
|
ntfs_error(vi->i_sb, "Failed to lookup attribute list " |
|
"attribute."); |
|
goto unm_err_out; |
|
} |
|
} else /* if (!err) */ { |
|
if (vi->i_ino == FILE_MFT) |
|
goto skip_attr_list_load; |
|
ntfs_debug("Attribute list found in inode 0x%lx.", vi->i_ino); |
|
NInoSetAttrList(ni); |
|
a = ctx->attr; |
|
if (a->flags & ATTR_COMPRESSION_MASK) { |
|
ntfs_error(vi->i_sb, "Attribute list attribute is " |
|
"compressed."); |
|
goto unm_err_out; |
|
} |
|
if (a->flags & ATTR_IS_ENCRYPTED || |
|
a->flags & ATTR_IS_SPARSE) { |
|
if (a->non_resident) { |
|
ntfs_error(vi->i_sb, "Non-resident attribute " |
|
"list attribute is encrypted/" |
|
"sparse."); |
|
goto unm_err_out; |
|
} |
|
ntfs_warning(vi->i_sb, "Resident attribute list " |
|
"attribute in inode 0x%lx is marked " |
|
"encrypted/sparse which is not true. " |
|
"However, Windows allows this and " |
|
"chkdsk does not detect or correct it " |
|
"so we will just ignore the invalid " |
|
"flags and pretend they are not set.", |
|
vi->i_ino); |
|
} |
|
/* Now allocate memory for the attribute list. */ |
|
ni->attr_list_size = (u32)ntfs_attr_size(a); |
|
ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size); |
|
if (!ni->attr_list) { |
|
ntfs_error(vi->i_sb, "Not enough memory to allocate " |
|
"buffer for attribute list."); |
|
err = -ENOMEM; |
|
goto unm_err_out; |
|
} |
|
if (a->non_resident) { |
|
NInoSetAttrListNonResident(ni); |
|
if (a->data.non_resident.lowest_vcn) { |
|
ntfs_error(vi->i_sb, "Attribute list has non " |
|
"zero lowest_vcn."); |
|
goto unm_err_out; |
|
} |
|
/* |
|
* Setup the runlist. No need for locking as we have |
|
* exclusive access to the inode at this time. |
|
*/ |
|
ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol, |
|
a, NULL); |
|
if (IS_ERR(ni->attr_list_rl.rl)) { |
|
err = PTR_ERR(ni->attr_list_rl.rl); |
|
ni->attr_list_rl.rl = NULL; |
|
ntfs_error(vi->i_sb, "Mapping pairs " |
|
"decompression failed."); |
|
goto unm_err_out; |
|
} |
|
/* Now load the attribute list. */ |
|
if ((err = load_attribute_list(vol, &ni->attr_list_rl, |
|
ni->attr_list, ni->attr_list_size, |
|
sle64_to_cpu(a->data.non_resident. |
|
initialized_size)))) { |
|
ntfs_error(vi->i_sb, "Failed to load " |
|
"attribute list attribute."); |
|
goto unm_err_out; |
|
} |
|
} else /* if (!a->non_resident) */ { |
|
if ((u8*)a + le16_to_cpu(a->data.resident.value_offset) |
|
+ le32_to_cpu( |
|
a->data.resident.value_length) > |
|
(u8*)ctx->mrec + vol->mft_record_size) { |
|
ntfs_error(vi->i_sb, "Corrupt attribute list " |
|
"in inode."); |
|
goto unm_err_out; |
|
} |
|
/* Now copy the attribute list. */ |
|
memcpy(ni->attr_list, (u8*)a + le16_to_cpu( |
|
a->data.resident.value_offset), |
|
le32_to_cpu( |
|
a->data.resident.value_length)); |
|
} |
|
} |
|
skip_attr_list_load: |
|
/* |
|
* If an attribute list is present we now have the attribute list value |
|
* in ntfs_ino->attr_list and it is ntfs_ino->attr_list_size bytes. |
|
*/ |
|
if (S_ISDIR(vi->i_mode)) { |
|
loff_t bvi_size; |
|
ntfs_inode *bni; |
|
INDEX_ROOT *ir; |
|
u8 *ir_end, *index_end; |
|
|
|
/* It is a directory, find index root attribute. */ |
|
ntfs_attr_reinit_search_ctx(ctx); |
|
err = ntfs_attr_lookup(AT_INDEX_ROOT, I30, 4, CASE_SENSITIVE, |
|
0, NULL, 0, ctx); |
|
if (unlikely(err)) { |
|
if (err == -ENOENT) { |
|
// FIXME: File is corrupt! Hot-fix with empty |
|
// index root attribute if recovery option is |
|
// set. |
|
ntfs_error(vi->i_sb, "$INDEX_ROOT attribute " |
|
"is missing."); |
|
} |
|
goto unm_err_out; |
|
} |
|
a = ctx->attr; |
|
/* Set up the state. */ |
|
if (unlikely(a->non_resident)) { |
|
ntfs_error(vol->sb, "$INDEX_ROOT attribute is not " |
|
"resident."); |
|
goto unm_err_out; |
|
} |
|
/* Ensure the attribute name is placed before the value. */ |
|
if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= |
|
le16_to_cpu(a->data.resident.value_offset)))) { |
|
ntfs_error(vol->sb, "$INDEX_ROOT attribute name is " |
|
"placed after the attribute value."); |
|
goto unm_err_out; |
|
} |
|
/* |
|
* Compressed/encrypted index root just means that the newly |
|
* created files in that directory should be created compressed/ |
|
* encrypted. However index root cannot be both compressed and |
|
* encrypted. |
|
*/ |
|
if (a->flags & ATTR_COMPRESSION_MASK) |
|
NInoSetCompressed(ni); |
|
if (a->flags & ATTR_IS_ENCRYPTED) { |
|
if (a->flags & ATTR_COMPRESSION_MASK) { |
|
ntfs_error(vi->i_sb, "Found encrypted and " |
|
"compressed attribute."); |
|
goto unm_err_out; |
|
} |
|
NInoSetEncrypted(ni); |
|
} |
|
if (a->flags & ATTR_IS_SPARSE) |
|
NInoSetSparse(ni); |
|
ir = (INDEX_ROOT*)((u8*)a + |
|
le16_to_cpu(a->data.resident.value_offset)); |
|
ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length); |
|
if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) { |
|
ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is " |
|
"corrupt."); |
|
goto unm_err_out; |
|
} |
|
index_end = (u8*)&ir->index + |
|
le32_to_cpu(ir->index.index_length); |
|
if (index_end > ir_end) { |
|
ntfs_error(vi->i_sb, "Directory index is corrupt."); |
|
goto unm_err_out; |
|
} |
|
if (ir->type != AT_FILE_NAME) { |
|
ntfs_error(vi->i_sb, "Indexed attribute is not " |
|
"$FILE_NAME."); |
|
goto unm_err_out; |
|
} |
|
if (ir->collation_rule != COLLATION_FILE_NAME) { |
|
ntfs_error(vi->i_sb, "Index collation rule is not " |
|
"COLLATION_FILE_NAME."); |
|
goto unm_err_out; |
|
} |
|
ni->itype.index.collation_rule = ir->collation_rule; |
|
ni->itype.index.block_size = le32_to_cpu(ir->index_block_size); |
|
if (ni->itype.index.block_size & |
|
(ni->itype.index.block_size - 1)) { |
|
ntfs_error(vi->i_sb, "Index block size (%u) is not a " |
|
"power of two.", |
|
ni->itype.index.block_size); |
|
goto unm_err_out; |
|
} |
|
if (ni->itype.index.block_size > PAGE_CACHE_SIZE) { |
|
ntfs_error(vi->i_sb, "Index block size (%u) > " |
|
"PAGE_CACHE_SIZE (%ld) is not " |
|
"supported. Sorry.", |
|
ni->itype.index.block_size, |
|
PAGE_CACHE_SIZE); |
|
err = -EOPNOTSUPP; |
|
goto unm_err_out; |
|
} |
|
if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) { |
|
ntfs_error(vi->i_sb, "Index block size (%u) < " |
|
"NTFS_BLOCK_SIZE (%i) is not " |
|
"supported. Sorry.", |
|
ni->itype.index.block_size, |
|
NTFS_BLOCK_SIZE); |
|
err = -EOPNOTSUPP; |
|
goto unm_err_out; |
|
} |
|
ni->itype.index.block_size_bits = |
|
ffs(ni->itype.index.block_size) - 1; |
|
/* Determine the size of a vcn in the directory index. */ |
|
if (vol->cluster_size <= ni->itype.index.block_size) { |
|
ni->itype.index.vcn_size = vol->cluster_size; |
|
ni->itype.index.vcn_size_bits = vol->cluster_size_bits; |
|
} else { |
|
ni->itype.index.vcn_size = vol->sector_size; |
|
ni->itype.index.vcn_size_bits = vol->sector_size_bits; |
|
} |
|
|
|
/* Setup the index allocation attribute, even if not present. */ |
|
NInoSetMstProtected(ni); |
|
ni->type = AT_INDEX_ALLOCATION; |
|
ni->name = I30; |
|
ni->name_len = 4; |
|
|
|
if (!(ir->index.flags & LARGE_INDEX)) { |
|
/* No index allocation. */ |
|
vi->i_size = ni->initialized_size = |
|
ni->allocated_size = 0; |
|
/* We are done with the mft record, so we release it. */ |
|
ntfs_attr_put_search_ctx(ctx); |
|
unmap_mft_record(ni); |
|
m = NULL; |
|
ctx = NULL; |
|
goto skip_large_dir_stuff; |
|
} /* LARGE_INDEX: Index allocation present. Setup state. */ |
|
NInoSetIndexAllocPresent(ni); |
|
/* Find index allocation attribute. */ |
|
ntfs_attr_reinit_search_ctx(ctx); |
|
err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, I30, 4, |
|
CASE_SENSITIVE, 0, NULL, 0, ctx); |
|
if (unlikely(err)) { |
|
if (err == -ENOENT) |
|
ntfs_error(vi->i_sb, "$INDEX_ALLOCATION " |
|
"attribute is not present but " |
|
"$INDEX_ROOT indicated it is."); |
|
else |
|
ntfs_error(vi->i_sb, "Failed to lookup " |
|
"$INDEX_ALLOCATION " |
|
"attribute."); |
|
goto unm_err_out; |
|
} |
|
a = ctx->attr; |
|
if (!a->non_resident) { |
|
ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute " |
|
"is resident."); |
|
goto unm_err_out; |
|
} |
|
/* |
|
* Ensure the attribute name is placed before the mapping pairs |
|
* array. |
|
*/ |
|
if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= |
|
le16_to_cpu( |
|
a->data.non_resident.mapping_pairs_offset)))) { |
|
ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name " |
|
"is placed after the mapping pairs " |
|
"array."); |
|
goto unm_err_out; |
|
} |
|
if (a->flags & ATTR_IS_ENCRYPTED) { |
|
ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute " |
|
"is encrypted."); |
|
goto unm_err_out; |
|
} |
|
if (a->flags & ATTR_IS_SPARSE) { |
|
ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute " |
|
"is sparse."); |
|
goto unm_err_out; |
|
} |
|
if (a->flags & ATTR_COMPRESSION_MASK) { |
|
ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute " |
|
"is compressed."); |
|
goto unm_err_out; |
|
} |
|
if (a->data.non_resident.lowest_vcn) { |
|
ntfs_error(vi->i_sb, "First extent of " |
|
"$INDEX_ALLOCATION attribute has non " |
|
"zero lowest_vcn."); |
|
goto unm_err_out; |
|
} |
|
vi->i_size = sle64_to_cpu(a->data.non_resident.data_size); |
|
ni->initialized_size = sle64_to_cpu( |
|
a->data.non_resident.initialized_size); |
|
ni->allocated_size = sle64_to_cpu( |
|
a->data.non_resident.allocated_size); |
|
/* |
|
* We are done with the mft record, so we release it. Otherwise |
|
* we would deadlock in ntfs_attr_iget(). |
|
*/ |
|
ntfs_attr_put_search_ctx(ctx); |
|
unmap_mft_record(ni); |
|
m = NULL; |
|
ctx = NULL; |
|
/* Get the index bitmap attribute inode. */ |
|
bvi = ntfs_attr_iget(vi, AT_BITMAP, I30, 4); |
|
if (IS_ERR(bvi)) { |
|
ntfs_error(vi->i_sb, "Failed to get bitmap attribute."); |
|
err = PTR_ERR(bvi); |
|
goto unm_err_out; |
|
} |
|
bni = NTFS_I(bvi); |
|
if (NInoCompressed(bni) || NInoEncrypted(bni) || |
|
NInoSparse(bni)) { |
|
ntfs_error(vi->i_sb, "$BITMAP attribute is compressed " |
|
"and/or encrypted and/or sparse."); |
|
goto iput_unm_err_out; |
|
} |
|
/* Consistency check bitmap size vs. index allocation size. */ |
|
bvi_size = i_size_read(bvi); |
|
if ((bvi_size << 3) < (vi->i_size >> |
|
ni->itype.index.block_size_bits)) { |
|
ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) " |
|
"for index allocation (0x%llx).", |
|
bvi_size << 3, vi->i_size); |
|
goto iput_unm_err_out; |
|
} |
|
/* No longer need the bitmap attribute inode. */ |
|
iput(bvi); |
|
skip_large_dir_stuff: |
|
/* Setup the operations for this inode. */ |
|
vi->i_op = &ntfs_dir_inode_ops; |
|
vi->i_fop = &ntfs_dir_ops; |
|
} else { |
|
/* It is a file. */ |
|
ntfs_attr_reinit_search_ctx(ctx); |
|
|
|
/* Setup the data attribute, even if not present. */ |
|
ni->type = AT_DATA; |
|
ni->name = NULL; |
|
ni->name_len = 0; |
|
|
|
/* Find first extent of the unnamed data attribute. */ |
|
err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, 0, NULL, 0, ctx); |
|
if (unlikely(err)) { |
|
vi->i_size = ni->initialized_size = |
|
ni->allocated_size = 0; |
|
if (err != -ENOENT) { |
|
ntfs_error(vi->i_sb, "Failed to lookup $DATA " |
|
"attribute."); |
|
goto unm_err_out; |
|
} |
|
/* |
|
* FILE_Secure does not have an unnamed $DATA |
|
* attribute, so we special case it here. |
|
*/ |
|
if (vi->i_ino == FILE_Secure) |
|
goto no_data_attr_special_case; |
|
/* |
|
* Most if not all the system files in the $Extend |
|
* system directory do not have unnamed data |
|
* attributes so we need to check if the parent |
|
* directory of the file is FILE_Extend and if it is |
|
* ignore this error. To do this we need to get the |
|
* name of this inode from the mft record as the name |
|
* contains the back reference to the parent directory. |
|
*/ |
|
if (ntfs_is_extended_system_file(ctx) > 0) |
|
goto no_data_attr_special_case; |
|
// FIXME: File is corrupt! Hot-fix with empty data |
|
// attribute if recovery option is set. |
|
ntfs_error(vi->i_sb, "$DATA attribute is missing."); |
|
goto unm_err_out; |
|
} |
|
a = ctx->attr; |
|
/* Setup the state. */ |
|
if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) { |
|
if (a->flags & ATTR_COMPRESSION_MASK) { |
|
NInoSetCompressed(ni); |
|
if (vol->cluster_size > 4096) { |
|
ntfs_error(vi->i_sb, "Found " |
|
"compressed data but " |
|
"compression is " |
|
"disabled due to " |
|
"cluster size (%i) > " |
|
"4kiB.", |
|
vol->cluster_size); |
|
goto unm_err_out; |
|
} |
|
if ((a->flags & ATTR_COMPRESSION_MASK) |
|
!= ATTR_IS_COMPRESSED) { |
|
ntfs_error(vi->i_sb, "Found unknown " |
|
"compression method " |
|
"or corrupt file."); |
|
goto unm_err_out; |
|
} |
|
} |
|
if (a->flags & ATTR_IS_SPARSE) |
|
NInoSetSparse(ni); |
|
} |
|
if (a->flags & ATTR_IS_ENCRYPTED) { |
|
if (NInoCompressed(ni)) { |
|
ntfs_error(vi->i_sb, "Found encrypted and " |
|
"compressed data."); |
|
goto unm_err_out; |
|
} |
|
NInoSetEncrypted(ni); |
|
} |
|
if (a->non_resident) { |
|
NInoSetNonResident(ni); |
|
if (NInoCompressed(ni) || NInoSparse(ni)) { |
|
if (NInoCompressed(ni) && a->data.non_resident. |
|
compression_unit != 4) { |
|
ntfs_error(vi->i_sb, "Found " |
|
"non-standard " |
|
"compression unit (%u " |
|
"instead of 4). " |
|
"Cannot handle this.", |
|
a->data.non_resident. |
|
compression_unit); |
|
err = -EOPNOTSUPP; |
|
goto unm_err_out; |
|
} |
|
if (a->data.non_resident.compression_unit) { |
|
ni->itype.compressed.block_size = 1U << |
|
(a->data.non_resident. |
|
compression_unit + |
|
vol->cluster_size_bits); |
|
ni->itype.compressed.block_size_bits = |
|
ffs(ni->itype. |
|
compressed. |
|
block_size) - 1; |
|
ni->itype.compressed.block_clusters = |
|
1U << a->data. |
|
non_resident. |
|
compression_unit; |
|
} else { |
|
ni->itype.compressed.block_size = 0; |
|
ni->itype.compressed.block_size_bits = |
|
0; |
|
ni->itype.compressed.block_clusters = |
|
0; |
|
} |
|
ni->itype.compressed.size = sle64_to_cpu( |
|
a->data.non_resident. |
|
compressed_size); |
|
} |
|
if (a->data.non_resident.lowest_vcn) { |
|
ntfs_error(vi->i_sb, "First extent of $DATA " |
|
"attribute has non zero " |
|
"lowest_vcn."); |
|
goto unm_err_out; |
|
} |
|
vi->i_size = sle64_to_cpu( |
|
a->data.non_resident.data_size); |
|
ni->initialized_size = sle64_to_cpu( |
|
a->data.non_resident.initialized_size); |
|
ni->allocated_size = sle64_to_cpu( |
|
a->data.non_resident.allocated_size); |
|
} else { /* Resident attribute. */ |
|
vi->i_size = ni->initialized_size = le32_to_cpu( |
|
a->data.resident.value_length); |
|
ni->allocated_size = le32_to_cpu(a->length) - |
|
le16_to_cpu( |
|
a->data.resident.value_offset); |
|
if (vi->i_size > ni->allocated_size) { |
|
ntfs_error(vi->i_sb, "Resident data attribute " |
|
"is corrupt (size exceeds " |
|
"allocation)."); |
|
goto unm_err_out; |
|
} |
|
} |
|
no_data_attr_special_case: |
|
/* We are done with the mft record, so we release it. */ |
|
ntfs_attr_put_search_ctx(ctx); |
|
unmap_mft_record(ni); |
|
m = NULL; |
|
ctx = NULL; |
|
/* Setup the operations for this inode. */ |
|
vi->i_op = &ntfs_file_inode_ops; |
|
vi->i_fop = &ntfs_file_ops; |
|
} |
|
if (NInoMstProtected(ni)) |
|
vi->i_mapping->a_ops = &ntfs_mst_aops; |
|
else |
|
vi->i_mapping->a_ops = &ntfs_aops; |
|
/* |
|
* The number of 512-byte blocks used on disk (for stat). This is in so |
|
* far inaccurate as it doesn't account for any named streams or other |
|
* special non-resident attributes, but that is how Windows works, too, |
|
* so we are at least consistent with Windows, if not entirely |
|
* consistent with the Linux Way. Doing it the Linux Way would cause a |
|
* significant slowdown as it would involve iterating over all |
|
* attributes in the mft record and adding the allocated/compressed |
|
* sizes of all non-resident attributes present to give us the Linux |
|
* correct size that should go into i_blocks (after division by 512). |
|
*/ |
|
if (S_ISREG(vi->i_mode) && (NInoCompressed(ni) || NInoSparse(ni))) |
|
vi->i_blocks = ni->itype.compressed.size >> 9; |
|
else |
|
vi->i_blocks = ni->allocated_size >> 9; |
|
ntfs_debug("Done."); |
|
return 0; |
|
iput_unm_err_out: |
|
iput(bvi); |
|
unm_err_out: |
|
if (!err) |
|
err = -EIO; |
|
if (ctx) |
|
ntfs_attr_put_search_ctx(ctx); |
|
if (m) |
|
unmap_mft_record(ni); |
|
err_out: |
|
ntfs_error(vol->sb, "Failed with error code %i. Marking corrupt " |
|
"inode 0x%lx as bad. Run chkdsk.", err, vi->i_ino); |
|
make_bad_inode(vi); |
|
if (err != -EOPNOTSUPP && err != -ENOMEM) |
|
NVolSetErrors(vol); |
|
return err; |
|
} |
|
|
|
/** |
|
* ntfs_read_locked_attr_inode - read an attribute inode from its base inode |
|
* @base_vi: base inode |
|
* @vi: attribute inode to read |
|
* |
|
* ntfs_read_locked_attr_inode() is called from ntfs_attr_iget() to read the |
|
* attribute inode described by @vi into memory from the base mft record |
|
* described by @base_ni. |
|
* |
|
* ntfs_read_locked_attr_inode() maps, pins and locks the base inode for |
|
* reading and looks up the attribute described by @vi before setting up the |
|
* necessary fields in @vi as well as initializing the ntfs inode. |
|
* |
|
* Q: What locks are held when the function is called? |
|
* A: i_state has I_NEW set, hence the inode is locked, also |
|
* i_count is set to 1, so it is not going to go away |
|
* |
|
* Return 0 on success and -errno on error. In the error case, the inode will |
|
* have had make_bad_inode() executed on it. |
|
* |
|
* Note this cannot be called for AT_INDEX_ALLOCATION. |
|
*/ |
|
static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi) |
|
{ |
|
ntfs_volume *vol = NTFS_SB(vi->i_sb); |
|
ntfs_inode *ni, *base_ni; |
|
MFT_RECORD *m; |
|
ATTR_RECORD *a; |
|
ntfs_attr_search_ctx *ctx; |
|
int err = 0; |
|
|
|
ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino); |
|
|
|
ntfs_init_big_inode(vi); |
|
|
|
ni = NTFS_I(vi); |
|
base_ni = NTFS_I(base_vi); |
|
|
|
/* Just mirror the values from the base inode. */ |
|
vi->i_version = base_vi->i_version; |
|
vi->i_uid = base_vi->i_uid; |
|
vi->i_gid = base_vi->i_gid; |
|
set_nlink(vi, base_vi->i_nlink); |
|
vi->i_mtime = base_vi->i_mtime; |
|
vi->i_ctime = base_vi->i_ctime; |
|
vi->i_atime = base_vi->i_atime; |
|
vi->i_generation = ni->seq_no = base_ni->seq_no; |
|
|
|
/* Set inode type to zero but preserve permissions. */ |
|
vi->i_mode = base_vi->i_mode & ~S_IFMT; |
|
|
|
m = map_mft_record(base_ni); |
|
if (IS_ERR(m)) { |
|
err = PTR_ERR(m); |
|
goto err_out; |
|
} |
|
ctx = ntfs_attr_get_search_ctx(base_ni, m); |
|
if (!ctx) { |
|
err = -ENOMEM; |
|
goto unm_err_out; |
|
} |
|
/* Find the attribute. */ |
|
err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, |
|
CASE_SENSITIVE, 0, NULL, 0, ctx); |
|
if (unlikely(err)) |
|
goto unm_err_out; |
|
a = ctx->attr; |
|
if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) { |
|
if (a->flags & ATTR_COMPRESSION_MASK) { |
|
NInoSetCompressed(ni); |
|
if ((ni->type != AT_DATA) || (ni->type == AT_DATA && |
|
ni->name_len)) { |
|
ntfs_error(vi->i_sb, "Found compressed " |
|
"non-data or named data " |
|
"attribute. Please report " |
|
"you saw this message to " |
|
"linux-ntfs-dev@lists." |
|
"sourceforge.net"); |
|
goto unm_err_out; |
|
} |
|
if (vol->cluster_size > 4096) { |
|
ntfs_error(vi->i_sb, "Found compressed " |
|
"attribute but compression is " |
|
"disabled due to cluster size " |
|
"(%i) > 4kiB.", |
|
vol->cluster_size); |
|
goto unm_err_out; |
|
} |
|
if ((a->flags & ATTR_COMPRESSION_MASK) != |
|
ATTR_IS_COMPRESSED) { |
|
ntfs_error(vi->i_sb, "Found unknown " |
|
"compression method."); |
|
goto unm_err_out; |
|
} |
|
} |
|
/* |
|
* The compressed/sparse flag set in an index root just means |
|
* to compress all files. |
|
*/ |
|
if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) { |
|
ntfs_error(vi->i_sb, "Found mst protected attribute " |
|
"but the attribute is %s. Please " |
|
"report you saw this message to " |
|
"linux-ntfs-dev@lists.sourceforge.net", |
|
NInoCompressed(ni) ? "compressed" : |
|
"sparse"); |
|
goto unm_err_out; |
|
} |
|
if (a->flags & ATTR_IS_SPARSE) |
|
NInoSetSparse(ni); |
|
} |
|
if (a->flags & ATTR_IS_ENCRYPTED) { |
|
if (NInoCompressed(ni)) { |
|
ntfs_error(vi->i_sb, "Found encrypted and compressed " |
|
"data."); |
|
goto unm_err_out; |
|
} |
|
/* |
|
* The encryption flag set in an index root just means to |
|
* encrypt all files. |
|
*/ |
|
if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) { |
|
ntfs_error(vi->i_sb, "Found mst protected attribute " |
|
"but the attribute is encrypted. " |
|
"Please report you saw this message " |
|
"to linux-ntfs-dev@lists.sourceforge." |
|
"net"); |
|
goto unm_err_out; |
|
} |
|
if (ni->type != AT_DATA) { |
|
ntfs_error(vi->i_sb, "Found encrypted non-data " |
|
"attribute."); |
|
goto unm_err_out; |
|
} |
|
NInoSetEncrypted(ni); |
|
} |
|
if (!a->non_resident) { |
|
/* Ensure the attribute name is placed before the value. */ |
|
if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= |
|
le16_to_cpu(a->data.resident.value_offset)))) { |
|
ntfs_error(vol->sb, "Attribute name is placed after " |
|
"the attribute value."); |
|
goto unm_err_out; |
|
} |
|
if (NInoMstProtected(ni)) { |
|
ntfs_error(vi->i_sb, "Found mst protected attribute " |
|
"but the attribute is resident. " |
|
"Please report you saw this message to " |
|
"linux-ntfs-dev@lists.sourceforge.net"); |
|
goto unm_err_out; |
|
} |
|
vi->i_size = ni->initialized_size = le32_to_cpu( |
|
a->data.resident.value_length); |
|
ni->allocated_size = le32_to_cpu(a->length) - |
|
le16_to_cpu(a->data.resident.value_offset); |
|
if (vi->i_size > ni->allocated_size) { |
|
ntfs_error(vi->i_sb, "Resident attribute is corrupt " |
|
"(size exceeds allocation)."); |
|
goto unm_err_out; |
|
} |
|
} else { |
|
NInoSetNonResident(ni); |
|
/* |
|
* Ensure the attribute name is placed before the mapping pairs |
|
* array. |
|
*/ |
|
if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= |
|
le16_to_cpu( |
|
a->data.non_resident.mapping_pairs_offset)))) { |
|
ntfs_error(vol->sb, "Attribute name is placed after " |
|
"the mapping pairs array."); |
|
goto unm_err_out; |
|
} |
|
if (NInoCompressed(ni) || NInoSparse(ni)) { |
|
if (NInoCompressed(ni) && a->data.non_resident. |
|
compression_unit != 4) { |
|
ntfs_error(vi->i_sb, "Found non-standard " |
|
"compression unit (%u instead " |
|
"of 4). Cannot handle this.", |
|
a->data.non_resident. |
|
compression_unit); |
|
err = -EOPNOTSUPP; |
|
goto unm_err_out; |
|
} |
|
if (a->data.non_resident.compression_unit) { |
|
ni->itype.compressed.block_size = 1U << |
|
(a->data.non_resident. |
|
compression_unit + |
|
vol->cluster_size_bits); |
|
ni->itype.compressed.block_size_bits = |
|
ffs(ni->itype.compressed. |
|
block_size) - 1; |
|
ni->itype.compressed.block_clusters = 1U << |
|
a->data.non_resident. |
|
compression_unit; |
|
} else { |
|
ni->itype.compressed.block_size = 0; |
|
ni->itype.compressed.block_size_bits = 0; |
|
ni->itype.compressed.block_clusters = 0; |
|
} |
|
ni->itype.compressed.size = sle64_to_cpu( |
|
a->data.non_resident.compressed_size); |
|
} |
|
if (a->data.non_resident.lowest_vcn) { |
|
ntfs_error(vi->i_sb, "First extent of attribute has " |
|
"non-zero lowest_vcn."); |
|
goto unm_err_out; |
|
} |
|
vi->i_size = sle64_to_cpu(a->data.non_resident.data_size); |
|
ni->initialized_size = sle64_to_cpu( |
|
a->data.non_resident.initialized_size); |
|
ni->allocated_size = sle64_to_cpu( |
|
a->data.non_resident.allocated_size); |
|
} |
|
if (NInoMstProtected(ni)) |
|
vi->i_mapping->a_ops = &ntfs_mst_aops; |
|
else |
|
vi->i_mapping->a_ops = &ntfs_aops; |
|
if ((NInoCompressed(ni) || NInoSparse(ni)) && ni->type != AT_INDEX_ROOT) |
|
vi->i_blocks = ni->itype.compressed.size >> 9; |
|
else |
|
vi->i_blocks = ni->allocated_size >> 9; |
|
/* |
|
* Make sure the base inode does not go away and attach it to the |
|
* attribute inode. |
|
*/ |
|
igrab(base_vi); |
|
ni->ext.base_ntfs_ino = base_ni; |
|
ni->nr_extents = -1; |
|
|
|
ntfs_attr_put_search_ctx(ctx); |
|
unmap_mft_record(base_ni); |
|
|
|
ntfs_debug("Done."); |
|
return 0; |
|
|
|
unm_err_out: |
|
if (!err) |
|
err = -EIO; |
|
if (ctx) |
|
ntfs_attr_put_search_ctx(ctx); |
|
unmap_mft_record(base_ni); |
|
err_out: |
|
ntfs_error(vol->sb, "Failed with error code %i while reading attribute " |
|
"inode (mft_no 0x%lx, type 0x%x, name_len %i). " |
|
"Marking corrupt inode and base inode 0x%lx as bad. " |
|
"Run chkdsk.", err, vi->i_ino, ni->type, ni->name_len, |
|
base_vi->i_ino); |
|
make_bad_inode(vi); |
|
if (err != -ENOMEM) |
|
NVolSetErrors(vol); |
|
return err; |
|
} |
|
|
|
/** |
|
* ntfs_read_locked_index_inode - read an index inode from its base inode |
|
* @base_vi: base inode |
|
* @vi: index inode to read |
|
* |
|
* ntfs_read_locked_index_inode() is called from ntfs_index_iget() to read the |
|
* index inode described by @vi into memory from the base mft record described |
|
* by @base_ni. |
|
* |
|
* ntfs_read_locked_index_inode() maps, pins and locks the base inode for |
|
* reading and looks up the attributes relating to the index described by @vi |
|
* before setting up the necessary fields in @vi as well as initializing the |
|
* ntfs inode. |
|
* |
|
* Note, index inodes are essentially attribute inodes (NInoAttr() is true) |
|
* with the attribute type set to AT_INDEX_ALLOCATION. Apart from that, they |
|
* are setup like directory inodes since directories are a special case of |
|
* indices ao they need to be treated in much the same way. Most importantly, |
|
* for small indices the index allocation attribute might not actually exist. |
|
* However, the index root attribute always exists but this does not need to |
|
* have an inode associated with it and this is why we define a new inode type |
|
* index. Also, like for directories, we need to have an attribute inode for |
|
* the bitmap attribute corresponding to the index allocation attribute and we |
|
* can store this in the appropriate field of the inode, just like we do for |
|
* normal directory inodes. |
|
* |
|
* Q: What locks are held when the function is called? |
|
* A: i_state has I_NEW set, hence the inode is locked, also |
|
* i_count is set to 1, so it is not going to go away |
|
* |
|
* Return 0 on success and -errno on error. In the error case, the inode will |
|
* have had make_bad_inode() executed on it. |
|
*/ |
|
static int ntfs_read_locked_index_inode(struct inode *base_vi, struct inode *vi) |
|
{ |
|
loff_t bvi_size; |
|
ntfs_volume *vol = NTFS_SB(vi->i_sb); |
|
ntfs_inode *ni, *base_ni, *bni; |
|
struct inode *bvi; |
|
MFT_RECORD *m; |
|
ATTR_RECORD *a; |
|
ntfs_attr_search_ctx *ctx; |
|
INDEX_ROOT *ir; |
|
u8 *ir_end, *index_end; |
|
int err = 0; |
|
|
|
ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino); |
|
ntfs_init_big_inode(vi); |
|
ni = NTFS_I(vi); |
|
base_ni = NTFS_I(base_vi); |
|
/* Just mirror the values from the base inode. */ |
|
vi->i_version = base_vi->i_version; |
|
vi->i_uid = base_vi->i_uid; |
|
vi->i_gid = base_vi->i_gid; |
|
set_nlink(vi, base_vi->i_nlink); |
|
vi->i_mtime = base_vi->i_mtime; |
|
vi->i_ctime = base_vi->i_ctime; |
|
vi->i_atime = base_vi->i_atime; |
|
vi->i_generation = ni->seq_no = base_ni->seq_no; |
|
/* Set inode type to zero but preserve permissions. */ |
|
vi->i_mode = base_vi->i_mode & ~S_IFMT; |
|
/* Map the mft record for the base inode. */ |
|
m = map_mft_record(base_ni); |
|
if (IS_ERR(m)) { |
|
err = PTR_ERR(m); |
|
goto err_out; |
|
} |
|
ctx = ntfs_attr_get_search_ctx(base_ni, m); |
|
if (!ctx) { |
|
err = -ENOMEM; |
|
goto unm_err_out; |
|
} |
|
/* Find the index root attribute. */ |
|
err = ntfs_attr_lookup(AT_INDEX_ROOT, ni->name, ni->name_len, |
|
CASE_SENSITIVE, 0, NULL, 0, ctx); |
|
if (unlikely(err)) { |
|
if (err == -ENOENT) |
|
ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is " |
|
"missing."); |
|
goto unm_err_out; |
|
} |
|
a = ctx->attr; |
|
/* Set up the state. */ |
|
if (unlikely(a->non_resident)) { |
|
ntfs_error(vol->sb, "$INDEX_ROOT attribute is not resident."); |
|
goto unm_err_out; |
|
} |
|
/* Ensure the attribute name is placed before the value. */ |
|
if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= |
|
le16_to_cpu(a->data.resident.value_offset)))) { |
|
ntfs_error(vol->sb, "$INDEX_ROOT attribute name is placed " |
|
"after the attribute value."); |
|
goto unm_err_out; |
|
} |
|
/* |
|
* Compressed/encrypted/sparse index root is not allowed, except for |
|
* directories of course but those are not dealt with here. |
|
*/ |
|
if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_ENCRYPTED | |
|
ATTR_IS_SPARSE)) { |
|
ntfs_error(vi->i_sb, "Found compressed/encrypted/sparse index " |
|
"root attribute."); |
|
goto unm_err_out; |
|
} |
|
ir = (INDEX_ROOT*)((u8*)a + le16_to_cpu(a->data.resident.value_offset)); |
|
ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length); |
|
if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) { |
|
ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is corrupt."); |
|
goto unm_err_out; |
|
} |
|
index_end = (u8*)&ir->index + le32_to_cpu(ir->index.index_length); |
|
if (index_end > ir_end) { |
|
ntfs_error(vi->i_sb, "Index is corrupt."); |
|
goto unm_err_out; |
|
} |
|
if (ir->type) { |
|
ntfs_error(vi->i_sb, "Index type is not 0 (type is 0x%x).", |
|
le32_to_cpu(ir->type)); |
|
goto unm_err_out; |
|
} |
|
ni->itype.index.collation_rule = ir->collation_rule; |
|
ntfs_debug("Index collation rule is 0x%x.", |
|
le32_to_cpu(ir->collation_rule)); |
|
ni->itype.index.block_size = le32_to_cpu(ir->index_block_size); |
|
if (!is_power_of_2(ni->itype.index.block_size)) { |
|
ntfs_error(vi->i_sb, "Index block size (%u) is not a power of " |
|
"two.", ni->itype.index.block_size); |
|
goto unm_err_out; |
|
} |
|
if (ni->itype.index.block_size > PAGE_CACHE_SIZE) { |
|
ntfs_error(vi->i_sb, "Index block size (%u) > PAGE_CACHE_SIZE " |
|
"(%ld) is not supported. Sorry.", |
|
ni->itype.index.block_size, PAGE_CACHE_SIZE); |
|
err = -EOPNOTSUPP; |
|
goto unm_err_out; |
|
} |
|
if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) { |
|
ntfs_error(vi->i_sb, "Index block size (%u) < NTFS_BLOCK_SIZE " |
|
"(%i) is not supported. Sorry.", |
|
ni->itype.index.block_size, NTFS_BLOCK_SIZE); |
|
err = -EOPNOTSUPP; |
|
goto unm_err_out; |
|
} |
|
ni->itype.index.block_size_bits = ffs(ni->itype.index.block_size) - 1; |
|
/* Determine the size of a vcn in the index. */ |
|
if (vol->cluster_size <= ni->itype.index.block_size) { |
|
ni->itype.index.vcn_size = vol->cluster_size; |
|
ni->itype.index.vcn_size_bits = vol->cluster_size_bits; |
|
} else { |
|
ni->itype.index.vcn_size = vol->sector_size; |
|
ni->itype.index.vcn_size_bits = vol->sector_size_bits; |
|
} |
|
/* Check for presence of index allocation attribute. */ |
|
if (!(ir->index.flags & LARGE_INDEX)) { |
|
/* No index allocation. */ |
|
vi->i_size = ni->initialized_size = ni->allocated_size = 0; |
|
/* We are done with the mft record, so we release it. */ |
|
ntfs_attr_put_search_ctx(ctx); |
|
unmap_mft_record(base_ni); |
|
m = NULL; |
|
ctx = NULL; |
|
goto skip_large_index_stuff; |
|
} /* LARGE_INDEX: Index allocation present. Setup state. */ |
|
NInoSetIndexAllocPresent(ni); |
|
/* Find index allocation attribute. */ |
|
ntfs_attr_reinit_search_ctx(ctx); |
|
err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, ni->name, ni->name_len, |
|
CASE_SENSITIVE, 0, NULL, 0, ctx); |
|
if (unlikely(err)) { |
|
if (err == -ENOENT) |
|
ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is " |
|
"not present but $INDEX_ROOT " |
|
"indicated it is."); |
|
else |
|
ntfs_error(vi->i_sb, "Failed to lookup " |
|
"$INDEX_ALLOCATION attribute."); |
|
goto unm_err_out; |
|
} |
|
a = ctx->attr; |
|
if (!a->non_resident) { |
|
ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is " |
|
"resident."); |
|
goto unm_err_out; |
|
} |
|
/* |
|
* Ensure the attribute name is placed before the mapping pairs array. |
|
*/ |
|
if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= |
|
le16_to_cpu( |
|
a->data.non_resident.mapping_pairs_offset)))) { |
|
ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name is " |
|
"placed after the mapping pairs array."); |
|
goto unm_err_out; |
|
} |
|
if (a->flags & ATTR_IS_ENCRYPTED) { |
|
ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is " |
|
"encrypted."); |
|
goto unm_err_out; |
|
} |
|
if (a->flags & ATTR_IS_SPARSE) { |
|
ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is sparse."); |
|
goto unm_err_out; |
|
} |
|
if (a->flags & ATTR_COMPRESSION_MASK) { |
|
ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is " |
|
"compressed."); |
|
goto unm_err_out; |
|
} |
|
if (a->data.non_resident.lowest_vcn) { |
|
ntfs_error(vi->i_sb, "First extent of $INDEX_ALLOCATION " |
|
"attribute has non zero lowest_vcn."); |
|
goto unm_err_out; |
|
} |
|
vi->i_size = sle64_to_cpu(a->data.non_resident.data_size); |
|
ni->initialized_size = sle64_to_cpu( |
|
a->data.non_resident.initialized_size); |
|
ni->allocated_size = sle64_to_cpu(a->data.non_resident.allocated_size); |
|
/* |
|
* We are done with the mft record, so we release it. Otherwise |
|
* we would deadlock in ntfs_attr_iget(). |
|
*/ |
|
ntfs_attr_put_search_ctx(ctx); |
|
unmap_mft_record(base_ni); |
|
m = NULL; |
|
ctx = NULL; |
|
/* Get the index bitmap attribute inode. */ |
|
bvi = ntfs_attr_iget(base_vi, AT_BITMAP, ni->name, ni->name_len); |
|
if (IS_ERR(bvi)) { |
|
ntfs_error(vi->i_sb, "Failed to get bitmap attribute."); |
|
err = PTR_ERR(bvi); |
|
goto unm_err_out; |
|
} |
|
bni = NTFS_I(bvi); |
|
if (NInoCompressed(bni) || NInoEncrypted(bni) || |
|
NInoSparse(bni)) { |
|
ntfs_error(vi->i_sb, "$BITMAP attribute is compressed and/or " |
|
"encrypted and/or sparse."); |
|
goto iput_unm_err_out; |
|
} |
|
/* Consistency check bitmap size vs. index allocation size. */ |
|
bvi_size = i_size_read(bvi); |
|
if ((bvi_size << 3) < (vi->i_size >> ni->itype.index.block_size_bits)) { |
|
ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) for " |
|
"index allocation (0x%llx).", bvi_size << 3, |
|
vi->i_size); |
|
goto iput_unm_err_out; |
|
} |
|
iput(bvi); |
|
skip_large_index_stuff: |
|
/* Setup the operations for this index inode. */ |
|
vi->i_op = NULL; |
|
vi->i_fop = NULL; |
|
vi->i_mapping->a_ops = &ntfs_mst_aops; |
|
vi->i_blocks = ni->allocated_size >> 9; |
|
/* |
|
* Make sure the base inode doesn't go away and attach it to the |
|
* index inode. |
|
*/ |
|
igrab(base_vi); |
|
ni->ext.base_ntfs_ino = base_ni; |
|
ni->nr_extents = -1; |
|
|
|
ntfs_debug("Done."); |
|
return 0; |
|
iput_unm_err_out: |
|
iput(bvi); |
|
unm_err_out: |
|
if (!err) |
|
err = -EIO; |
|
if (ctx) |
|
ntfs_attr_put_search_ctx(ctx); |
|
if (m) |
|
unmap_mft_record(base_ni); |
|
err_out: |
|
ntfs_error(vi->i_sb, "Failed with error code %i while reading index " |
|
"inode (mft_no 0x%lx, name_len %i.", err, vi->i_ino, |
|
ni->name_len); |
|
make_bad_inode(vi); |
|
if (err != -EOPNOTSUPP && err != -ENOMEM) |
|
NVolSetErrors(vol); |
|
return err; |
|
} |
|
|
|
/* |
|
* The MFT inode has special locking, so teach the lock validator |
|
* about this by splitting off the locking rules of the MFT from |
|
* the locking rules of other inodes. The MFT inode can never be |
|
* accessed from the VFS side (or even internally), only by the |
|
* map_mft functions. |
|
*/ |
|
static struct lock_class_key mft_ni_runlist_lock_key, mft_ni_mrec_lock_key; |
|
|
|
/** |
|
* ntfs_read_inode_mount - special read_inode for mount time use only |
|
* @vi: inode to read |
|
* |
|
* Read inode FILE_MFT at mount time, only called with super_block lock |
|
* held from within the read_super() code path. |
|
* |
|
* This function exists because when it is called the page cache for $MFT/$DATA |
|
* is not initialized and hence we cannot get at the contents of mft records |
|
* by calling map_mft_record*(). |
|
* |
|
* Further it needs to cope with the circular references problem, i.e. cannot |
|
* load any attributes other than $ATTRIBUTE_LIST until $DATA is loaded, because |
|
* we do not know where the other extent mft records are yet and again, because |
|
* we cannot call map_mft_record*() yet. Obviously this applies only when an |
|
* attribute list is actually present in $MFT inode. |
|
* |
|
* We solve these problems by starting with the $DATA attribute before anything |
|
* else and iterating using ntfs_attr_lookup($DATA) over all extents. As each |
|
* extent is found, we ntfs_mapping_pairs_decompress() including the implied |
|
* ntfs_runlists_merge(). Each step of the iteration necessarily provides |
|
* sufficient information for the next step to complete. |
|
* |
|
* This should work but there are two possible pit falls (see inline comments |
|
* below), but only time will tell if they are real pits or just smoke... |
|
*/ |
|
int ntfs_read_inode_mount(struct inode *vi) |
|
{ |
|
VCN next_vcn, last_vcn, highest_vcn; |
|
s64 block; |
|
struct super_block *sb = vi->i_sb; |
|
ntfs_volume *vol = NTFS_SB(sb); |
|
struct buffer_head *bh; |
|
ntfs_inode *ni; |
|
MFT_RECORD *m = NULL; |
|
ATTR_RECORD *a; |
|
ntfs_attr_search_ctx *ctx; |
|
unsigned int i, nr_blocks; |
|
int err; |
|
|
|
ntfs_debug("Entering."); |
|
|
|
/* Initialize the ntfs specific part of @vi. */ |
|
ntfs_init_big_inode(vi); |
|
|
|
ni = NTFS_I(vi); |
|
|
|
/* Setup the data attribute. It is special as it is mst protected. */ |
|
NInoSetNonResident(ni); |
|
NInoSetMstProtected(ni); |
|
NInoSetSparseDisabled(ni); |
|
ni->type = AT_DATA; |
|
ni->name = NULL; |
|
ni->name_len = 0; |
|
/* |
|
* This sets up our little cheat allowing us to reuse the async read io |
|
* completion handler for directories. |
|
*/ |
|
ni->itype.index.block_size = vol->mft_record_size; |
|
ni->itype.index.block_size_bits = vol->mft_record_size_bits; |
|
|
|
/* Very important! Needed to be able to call map_mft_record*(). */ |
|
vol->mft_ino = vi; |
|
|
|
/* Allocate enough memory to read the first mft record. */ |
|
if (vol->mft_record_size > 64 * 1024) { |
|
ntfs_error(sb, "Unsupported mft record size %i (max 64kiB).", |
|
vol->mft_record_size); |
|
goto err_out; |
|
} |
|
i = vol->mft_record_size; |
|
if (i < sb->s_blocksize) |
|
i = sb->s_blocksize; |
|
m = (MFT_RECORD*)ntfs_malloc_nofs(i); |
|
if (!m) { |
|
ntfs_error(sb, "Failed to allocate buffer for $MFT record 0."); |
|
goto err_out; |
|
} |
|
|
|
/* Determine the first block of the $MFT/$DATA attribute. */ |
|
block = vol->mft_lcn << vol->cluster_size_bits >> |
|
sb->s_blocksize_bits; |
|
nr_blocks = vol->mft_record_size >> sb->s_blocksize_bits; |
|
if (!nr_blocks) |
|
nr_blocks = 1; |
|
|
|
/* Load $MFT/$DATA's first mft record. */ |
|
for (i = 0; i < nr_blocks; i++) { |
|
bh = sb_bread(sb, block++); |
|
if (!bh) { |
|
ntfs_error(sb, "Device read failed."); |
|
goto err_out; |
|
} |
|
memcpy((char*)m + (i << sb->s_blocksize_bits), bh->b_data, |
|
sb->s_blocksize); |
|
brelse(bh); |
|
} |
|
|
|
/* Apply the mst fixups. */ |
|
if (post_read_mst_fixup((NTFS_RECORD*)m, vol->mft_record_size)) { |
|
/* FIXME: Try to use the $MFTMirr now. */ |
|
ntfs_error(sb, "MST fixup failed. $MFT is corrupt."); |
|
goto err_out; |
|
} |
|
|
|
/* Need this to sanity check attribute list references to $MFT. */ |
|
vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number); |
|
|
|
/* Provides readpage() and sync_page() for map_mft_record(). */ |
|
vi->i_mapping->a_ops = &ntfs_mst_aops; |
|
|
|
ctx = ntfs_attr_get_search_ctx(ni, m); |
|
if (!ctx) { |
|
err = -ENOMEM; |
|
goto err_out; |
|
} |
|
|
|
/* Find the attribute list attribute if present. */ |
|
err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx); |
|
if (err) { |
|
if (unlikely(err != -ENOENT)) { |
|
ntfs_error(sb, "Failed to lookup attribute list " |
|
"attribute. You should run chkdsk."); |
|
goto put_err_out; |
|
} |
|
} else /* if (!err) */ { |
|
ATTR_LIST_ENTRY *al_entry, *next_al_entry; |
|
u8 *al_end; |
|
static const char *es = " Not allowed. $MFT is corrupt. " |
|
"You should run chkdsk."; |
|
|
|
ntfs_debug("Attribute list attribute found in $MFT."); |
|
NInoSetAttrList(ni); |
|
a = ctx->attr; |
|
if (a->flags & ATTR_COMPRESSION_MASK) { |
|
ntfs_error(sb, "Attribute list attribute is " |
|
"compressed.%s", es); |
|
goto put_err_out; |
|
} |
|
if (a->flags & ATTR_IS_ENCRYPTED || |
|
a->flags & ATTR_IS_SPARSE) { |
|
if (a->non_resident) { |
|
ntfs_error(sb, "Non-resident attribute list " |
|
"attribute is encrypted/" |
|
"sparse.%s", es); |
|
goto put_err_out; |
|
} |
|
ntfs_warning(sb, "Resident attribute list attribute " |
|
"in $MFT system file is marked " |
|
"encrypted/sparse which is not true. " |
|
"However, Windows allows this and " |
|
"chkdsk does not detect or correct it " |
|
"so we will just ignore the invalid " |
|
"flags and pretend they are not set."); |
|
} |
|
/* Now allocate memory for the attribute list. */ |
|
ni->attr_list_size = (u32)ntfs_attr_size(a); |
|
ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size); |
|
if (!ni->attr_list) { |
|
ntfs_error(sb, "Not enough memory to allocate buffer " |
|
"for attribute list."); |
|
goto put_err_out; |
|
} |
|
if (a->non_resident) { |
|
NInoSetAttrListNonResident(ni); |
|
if (a->data.non_resident.lowest_vcn) { |
|
ntfs_error(sb, "Attribute list has non zero " |
|
"lowest_vcn. $MFT is corrupt. " |
|
"You should run chkdsk."); |
|
goto put_err_out; |
|
} |
|
/* Setup the runlist. */ |
|
ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol, |
|
a, NULL); |
|
if (IS_ERR(ni->attr_list_rl.rl)) { |
|
err = PTR_ERR(ni->attr_list_rl.rl); |
|
ni->attr_list_rl.rl = NULL; |
|
ntfs_error(sb, "Mapping pairs decompression " |
|
"failed with error code %i.", |
|
-err); |
|
goto put_err_out; |
|
} |
|
/* Now load the attribute list. */ |
|
if ((err = load_attribute_list(vol, &ni->attr_list_rl, |
|
ni->attr_list, ni->attr_list_size, |
|
sle64_to_cpu(a->data. |
|
non_resident.initialized_size)))) { |
|
ntfs_error(sb, "Failed to load attribute list " |
|
"attribute with error code %i.", |
|
-err); |
|
goto put_err_out; |
|
} |
|
} else /* if (!ctx.attr->non_resident) */ { |
|
if ((u8*)a + le16_to_cpu( |
|
a->data.resident.value_offset) + |
|
le32_to_cpu( |
|
a->data.resident.value_length) > |
|
(u8*)ctx->mrec + vol->mft_record_size) { |
|
ntfs_error(sb, "Corrupt attribute list " |
|
"attribute."); |
|
goto put_err_out; |
|
} |
|
/* Now copy the attribute list. */ |
|
memcpy(ni->attr_list, (u8*)a + le16_to_cpu( |
|
a->data.resident.value_offset), |
|
le32_to_cpu( |
|
a->data.resident.value_length)); |
|
} |
|
/* The attribute list is now setup in memory. */ |
|
/* |
|
* FIXME: I don't know if this case is actually possible. |
|
* According to logic it is not possible but I have seen too |
|
* many weird things in MS software to rely on logic... Thus we |
|
* perform a manual search and make sure the first $MFT/$DATA |
|
* extent is in the base inode. If it is not we abort with an |
|
* error and if we ever see a report of this error we will need |
|
* to do some magic in order to have the necessary mft record |
|
* loaded and in the right place in the page cache. But |
|
* hopefully logic will prevail and this never happens... |
|
*/ |
|
al_entry = (ATTR_LIST_ENTRY*)ni->attr_list; |
|
al_end = (u8*)al_entry + ni->attr_list_size; |
|
for (;; al_entry = next_al_entry) { |
|
/* Out of bounds check. */ |
|
if ((u8*)al_entry < ni->attr_list || |
|
(u8*)al_entry > al_end) |
|
goto em_put_err_out; |
|
/* Catch the end of the attribute list. */ |
|
if ((u8*)al_entry == al_end) |
|
goto em_put_err_out; |
|
if (!al_entry->length) |
|
goto em_put_err_out; |
|
if ((u8*)al_entry + 6 > al_end || (u8*)al_entry + |
|
le16_to_cpu(al_entry->length) > al_end) |
|
goto em_put_err_out; |
|
next_al_entry = (ATTR_LIST_ENTRY*)((u8*)al_entry + |
|
le16_to_cpu(al_entry->length)); |
|
if (le32_to_cpu(al_entry->type) > le32_to_cpu(AT_DATA)) |
|
goto em_put_err_out; |
|
if (AT_DATA != al_entry->type) |
|
continue; |
|
/* We want an unnamed attribute. */ |
|
if (al_entry->name_length) |
|
goto em_put_err_out; |
|
/* Want the first entry, i.e. lowest_vcn == 0. */ |
|
if (al_entry->lowest_vcn) |
|
goto em_put_err_out; |
|
/* First entry has to be in the base mft record. */ |
|
if (MREF_LE(al_entry->mft_reference) != vi->i_ino) { |
|
/* MFT references do not match, logic fails. */ |
|
ntfs_error(sb, "BUG: The first $DATA extent " |
|
"of $MFT is not in the base " |
|
"mft record. Please report " |
|
"you saw this message to " |
|
"linux-ntfs-dev@lists." |
|
"sourceforge.net"); |
|
goto put_err_out; |
|
} else { |
|
/* Sequence numbers must match. */ |
|
if (MSEQNO_LE(al_entry->mft_reference) != |
|
ni->seq_no) |
|
goto em_put_err_out; |
|
/* Got it. All is ok. We can stop now. */ |
|
break; |
|
} |
|
} |
|
} |
|
|
|
ntfs_attr_reinit_search_ctx(ctx); |
|
|
|
/* Now load all attribute extents. */ |
|
a = NULL; |
|
next_vcn = last_vcn = highest_vcn = 0; |
|
while (!(err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, next_vcn, NULL, 0, |
|
ctx))) { |
|
runlist_element *nrl; |
|
|
|
/* Cache the current attribute. */ |
|
a = ctx->attr; |
|
/* $MFT must be non-resident. */ |
|
if (!a->non_resident) { |
|
ntfs_error(sb, "$MFT must be non-resident but a " |
|
"resident extent was found. $MFT is " |
|
"corrupt. Run chkdsk."); |
|
goto put_err_out; |
|
} |
|
/* $MFT must be uncompressed and unencrypted. */ |
|
if (a->flags & ATTR_COMPRESSION_MASK || |
|
a->flags & ATTR_IS_ENCRYPTED || |
|
a->flags & ATTR_IS_SPARSE) { |
|
ntfs_error(sb, "$MFT must be uncompressed, " |
|
"non-sparse, and unencrypted but a " |
|
"compressed/sparse/encrypted extent " |
|
"was found. $MFT is corrupt. Run " |
|
"chkdsk."); |
|
goto put_err_out; |
|
} |
|
/* |
|
* Decompress the mapping pairs array of this extent and merge |
|
* the result into the existing runlist. No need for locking |
|
* as we have exclusive access to the inode at this time and we |
|
* are a mount in progress task, too. |
|
*/ |
|
nrl = ntfs_mapping_pairs_decompress(vol, a, ni->runlist.rl); |
|
if (IS_ERR(nrl)) { |
|
ntfs_error(sb, "ntfs_mapping_pairs_decompress() " |
|
"failed with error code %ld. $MFT is " |
|
"corrupt.", PTR_ERR(nrl)); |
|
goto put_err_out; |
|
} |
|
ni->runlist.rl = nrl; |
|
|
|
/* Are we in the first extent? */ |
|
if (!next_vcn) { |
|
if (a->data.non_resident.lowest_vcn) { |
|
ntfs_error(sb, "First extent of $DATA " |
|
"attribute has non zero " |
|
"lowest_vcn. $MFT is corrupt. " |
|
"You should run chkdsk."); |
|
goto put_err_out; |
|
} |
|
/* Get the last vcn in the $DATA attribute. */ |
|
last_vcn = sle64_to_cpu( |
|
a->data.non_resident.allocated_size) |
|
>> vol->cluster_size_bits; |
|
/* Fill in the inode size. */ |
|
vi->i_size = sle64_to_cpu( |
|
a->data.non_resident.data_size); |
|
ni->initialized_size = sle64_to_cpu( |
|
a->data.non_resident.initialized_size); |
|
ni->allocated_size = sle64_to_cpu( |
|
a->data.non_resident.allocated_size); |
|
/* |
|
* Verify the number of mft records does not exceed |
|
* 2^32 - 1. |
|
*/ |
|
if ((vi->i_size >> vol->mft_record_size_bits) >= |
|
(1ULL << 32)) { |
|
ntfs_error(sb, "$MFT is too big! Aborting."); |
|
goto put_err_out; |
|
} |
|
/* |
|
* We have got the first extent of the runlist for |
|
* $MFT which means it is now relatively safe to call |
|
* the normal ntfs_read_inode() function. |
|
* Complete reading the inode, this will actually |
|
* re-read the mft record for $MFT, this time entering |
|
* it into the page cache with which we complete the |
|
* kick start of the volume. It should be safe to do |
|
* this now as the first extent of $MFT/$DATA is |
|
* already known and we would hope that we don't need |
|
* further extents in order to find the other |
|
* attributes belonging to $MFT. Only time will tell if |
|
* this is really the case. If not we will have to play |
|
* magic at this point, possibly duplicating a lot of |
|
* ntfs_read_inode() at this point. We will need to |
|
* ensure we do enough of its work to be able to call |
|
* ntfs_read_inode() on extents of $MFT/$DATA. But lets |
|
* hope this never happens... |
|
*/ |
|
ntfs_read_locked_inode(vi); |
|
if (is_bad_inode(vi)) { |
|
ntfs_error(sb, "ntfs_read_inode() of $MFT " |
|
"failed. BUG or corrupt $MFT. " |
|
"Run chkdsk and if no errors " |
|
"are found, please report you " |
|
"saw this message to " |
|
"linux-ntfs-dev@lists." |
|
"sourceforge.net"); |
|
ntfs_attr_put_search_ctx(ctx); |
|
/* Revert to the safe super operations. */ |
|
ntfs_free(m); |
|
return -1; |
|
} |
|
/* |
|
* Re-initialize some specifics about $MFT's inode as |
|
* ntfs_read_inode() will have set up the default ones. |
|
*/ |
|
/* Set uid and gid to root. */ |
|
vi->i_uid = GLOBAL_ROOT_UID; |
|
vi->i_gid = GLOBAL_ROOT_GID; |
|
/* Regular file. No access for anyone. */ |
|
vi->i_mode = S_IFREG; |
|
/* No VFS initiated operations allowed for $MFT. */ |
|
vi->i_op = &ntfs_empty_inode_ops; |
|
vi->i_fop = &ntfs_empty_file_ops; |
|
} |
|
|
|
/* Get the lowest vcn for the next extent. */ |
|
highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn); |
|
next_vcn = highest_vcn + 1; |
|
|
|
/* Only one extent or error, which we catch below. */ |
|
if (next_vcn <= 0) |
|
break; |
|
|
|
/* Avoid endless loops due to corruption. */ |
|
if (next_vcn < sle64_to_cpu( |
|
a->data.non_resident.lowest_vcn)) { |
|
ntfs_error(sb, "$MFT has corrupt attribute list " |
|
"attribute. Run chkdsk."); |
|
goto put_err_out; |
|
} |
|
} |
|
if (err != -ENOENT) { |
|
ntfs_error(sb, "Failed to lookup $MFT/$DATA attribute extent. " |
|
"$MFT is corrupt. Run chkdsk."); |
|
goto put_err_out; |
|
} |
|
if (!a) { |
|
ntfs_error(sb, "$MFT/$DATA attribute not found. $MFT is " |
|
"corrupt. Run chkdsk."); |
|
goto put_err_out; |
|
} |
|
if (highest_vcn && highest_vcn != last_vcn - 1) { |
|
ntfs_error(sb, "Failed to load the complete runlist for " |
|
"$MFT/$DATA. Driver bug or corrupt $MFT. " |
|
"Run chkdsk."); |
|
ntfs_debug("highest_vcn = 0x%llx, last_vcn - 1 = 0x%llx", |
|
(unsigned long long)highest_vcn, |
|
(unsigned long long)last_vcn - 1); |
|
goto put_err_out; |
|
} |
|
ntfs_attr_put_search_ctx(ctx); |
|
ntfs_debug("Done."); |
|
ntfs_free(m); |
|
|
|
/* |
|
* Split the locking rules of the MFT inode from the |
|
* locking rules of other inodes: |
|
*/ |
|
lockdep_set_class(&ni->runlist.lock, &mft_ni_runlist_lock_key); |
|
lockdep_set_class(&ni->mrec_lock, &mft_ni_mrec_lock_key); |
|
|
|
return 0; |
|
|
|
em_put_err_out: |
|
ntfs_error(sb, "Couldn't find first extent of $DATA attribute in " |
|
"attribute list. $MFT is corrupt. Run chkdsk."); |
|
put_err_out: |
|
ntfs_attr_put_search_ctx(ctx); |
|
err_out: |
|
ntfs_error(sb, "Failed. Marking inode as bad."); |
|
make_bad_inode(vi); |
|
ntfs_free(m); |
|
return -1; |
|
} |
|
|
|
static void __ntfs_clear_inode(ntfs_inode *ni) |
|
{ |
|
/* Free all alocated memory. */ |
|
down_write(&ni->runlist.lock); |
|
if (ni->runlist.rl) { |
|
ntfs_free(ni->runlist.rl); |
|
ni->runlist.rl = NULL; |
|
} |
|
up_write(&ni->runlist.lock); |
|
|
|
if (ni->attr_list) { |
|
ntfs_free(ni->attr_list); |
|
ni->attr_list = NULL; |
|
} |
|
|
|
down_write(&ni->attr_list_rl.lock); |
|
if (ni->attr_list_rl.rl) { |
|
ntfs_free(ni->attr_list_rl.rl); |
|
ni->attr_list_rl.rl = NULL; |
|
} |
|
up_write(&ni->attr_list_rl.lock); |
|
|
|
if (ni->name_len && ni->name != I30) { |
|
/* Catch bugs... */ |
|
BUG_ON(!ni->name); |
|
kfree(ni->name); |
|
} |
|
} |
|
|
|
void ntfs_clear_extent_inode(ntfs_inode *ni) |
|
{ |
|
ntfs_debug("Entering for inode 0x%lx.", ni->mft_no); |
|
|
|
BUG_ON(NInoAttr(ni)); |
|
BUG_ON(ni->nr_extents != -1); |
|
|
|
#ifdef NTFS_RW |
|
if (NInoDirty(ni)) { |
|
if (!is_bad_inode(VFS_I(ni->ext.base_ntfs_ino))) |
|
ntfs_error(ni->vol->sb, "Clearing dirty extent inode! " |
|
"Losing data! This is a BUG!!!"); |
|
// FIXME: Do something!!! |
|
} |
|
#endif /* NTFS_RW */ |
|
|
|
__ntfs_clear_inode(ni); |
|
|
|
/* Bye, bye... */ |
|
ntfs_destroy_extent_inode(ni); |
|
} |
|
|
|
/** |
|
* ntfs_evict_big_inode - clean up the ntfs specific part of an inode |
|
* @vi: vfs inode pending annihilation |
|
* |
|
* When the VFS is going to remove an inode from memory, ntfs_clear_big_inode() |
|
* is called, which deallocates all memory belonging to the NTFS specific part |
|
* of the inode and returns. |
|
* |
|
* If the MFT record is dirty, we commit it before doing anything else. |
|
*/ |
|
void ntfs_evict_big_inode(struct inode *vi) |
|
{ |
|
ntfs_inode *ni = NTFS_I(vi); |
|
|
|
truncate_inode_pages(&vi->i_data, 0); |
|
clear_inode(vi); |
|
|
|
#ifdef NTFS_RW |
|
if (NInoDirty(ni)) { |
|
bool was_bad = (is_bad_inode(vi)); |
|
|
|
/* Committing the inode also commits all extent inodes. */ |
|
ntfs_commit_inode(vi); |
|
|
|
if (!was_bad && (is_bad_inode(vi) || NInoDirty(ni))) { |
|
ntfs_error(vi->i_sb, "Failed to commit dirty inode " |
|
"0x%lx. Losing data!", vi->i_ino); |
|
// FIXME: Do something!!! |
|
} |
|
} |
|
#endif /* NTFS_RW */ |
|
|
|
/* No need to lock at this stage as no one else has a reference. */ |
|
if (ni->nr_extents > 0) { |
|
int i; |
|
|
|
for (i = 0; i < ni->nr_extents; i++) |
|
ntfs_clear_extent_inode(ni->ext.extent_ntfs_inos[i]); |
|
kfree(ni->ext.extent_ntfs_inos); |
|
} |
|
|
|
__ntfs_clear_inode(ni); |
|
|
|
if (NInoAttr(ni)) { |
|
/* Release the base inode if we are holding it. */ |
|
if (ni->nr_extents == -1) { |
|
iput(VFS_I(ni->ext.base_ntfs_ino)); |
|
ni->nr_extents = 0; |
|
ni->ext.base_ntfs_ino = NULL; |
|
} |
|
} |
|
return; |
|
} |
|
|
|
/** |
|
* ntfs_show_options - show mount options in /proc/mounts |
|
* @sf: seq_file in which to write our mount options |
|
* @root: root of the mounted tree whose mount options to display |
|
* |
|
* Called by the VFS once for each mounted ntfs volume when someone reads |
|
* /proc/mounts in order to display the NTFS specific mount options of each |
|
* mount. The mount options of fs specified by @root are written to the seq file |
|
* @sf and success is returned. |
|
*/ |
|
int ntfs_show_options(struct seq_file *sf, struct dentry *root) |
|
{ |
|
ntfs_volume *vol = NTFS_SB(root->d_sb); |
|
int i; |
|
|
|
seq_printf(sf, ",uid=%i", from_kuid_munged(&init_user_ns, vol->uid)); |
|
seq_printf(sf, ",gid=%i", from_kgid_munged(&init_user_ns, vol->gid)); |
|
if (vol->fmask == vol->dmask) |
|
seq_printf(sf, ",umask=0%o", vol->fmask); |
|
else { |
|
seq_printf(sf, ",fmask=0%o", vol->fmask); |
|
seq_printf(sf, ",dmask=0%o", vol->dmask); |
|
} |
|
seq_printf(sf, ",nls=%s", vol->nls_map->charset); |
|
if (NVolCaseSensitive(vol)) |
|
seq_printf(sf, ",case_sensitive"); |
|
if (NVolShowSystemFiles(vol)) |
|
seq_printf(sf, ",show_sys_files"); |
|
if (!NVolSparseEnabled(vol)) |
|
seq_printf(sf, ",disable_sparse"); |
|
for (i = 0; on_errors_arr[i].val; i++) { |
|
if (on_errors_arr[i].val & vol->on_errors) |
|
seq_printf(sf, ",errors=%s", on_errors_arr[i].str); |
|
} |
|
seq_printf(sf, ",mft_zone_multiplier=%i", vol->mft_zone_multiplier); |
|
return 0; |