You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1825 lines
46 KiB
1825 lines
46 KiB
/* |
|
* An async IO implementation for Linux |
|
* Written by Benjamin LaHaise <bcrl@kvack.org> |
|
* |
|
* Implements an efficient asynchronous io interface. |
|
* |
|
* Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved. |
|
* |
|
* See ../COPYING for licensing terms. |
|
*/ |
|
#include <linux/kernel.h> |
|
#include <linux/init.h> |
|
#include <linux/errno.h> |
|
#include <linux/time.h> |
|
#include <linux/aio_abi.h> |
|
#include <linux/module.h> |
|
#include <linux/syscalls.h> |
|
#include <linux/backing-dev.h> |
|
#include <linux/uio.h> |
|
|
|
#define DEBUG 0 |
|
|
|
#include <linux/sched.h> |
|
#include <linux/fs.h> |
|
#include <linux/file.h> |
|
#include <linux/mm.h> |
|
#include <linux/mman.h> |
|
#include <linux/mmu_context.h> |
|
#include <linux/slab.h> |
|
#include <linux/timer.h> |
|
#include <linux/aio.h> |
|
#include <linux/highmem.h> |
|
#include <linux/workqueue.h> |
|
#include <linux/security.h> |
|
#include <linux/eventfd.h> |
|
#include <linux/blkdev.h> |
|
#include <linux/mempool.h> |
|
#include <linux/hash.h> |
|
#include <linux/compat.h> |
|
|
|
#include <asm/kmap_types.h> |
|
#include <asm/uaccess.h> |
|
|
|
#if DEBUG > 1 |
|
#define dprintk printk |
|
#else |
|
#define dprintk(x...) do { ; } while (0) |
|
#endif |
|
|
|
/*------ sysctl variables----*/ |
|
static DEFINE_SPINLOCK(aio_nr_lock); |
|
unsigned long aio_nr; /* current system wide number of aio requests */ |
|
unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */ |
|
/*----end sysctl variables---*/ |
|
|
|
static struct kmem_cache *kiocb_cachep; |
|
static struct kmem_cache *kioctx_cachep; |
|
|
|
static struct workqueue_struct *aio_wq; |
|
|
|
/* Used for rare fput completion. */ |
|
static void aio_fput_routine(struct work_struct *); |
|
static DECLARE_WORK(fput_work, aio_fput_routine); |
|
|
|
static DEFINE_SPINLOCK(fput_lock); |
|
static LIST_HEAD(fput_head); |
|
|
|
#define AIO_BATCH_HASH_BITS 3 /* allocated on-stack, so don't go crazy */ |
|
#define AIO_BATCH_HASH_SIZE (1 << AIO_BATCH_HASH_BITS) |
|
struct aio_batch_entry { |
|
struct hlist_node list; |
|
struct address_space *mapping; |
|
}; |
|
mempool_t *abe_pool; |
|
|
|
static void aio_kick_handler(struct work_struct *); |
|
static void aio_queue_work(struct kioctx *); |
|
|
|
/* aio_setup |
|
* Creates the slab caches used by the aio routines, panic on |
|
* failure as this is done early during the boot sequence. |
|
*/ |
|
static int __init aio_setup(void) |
|
{ |
|
kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC); |
|
kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC); |
|
|
|
aio_wq = create_workqueue("aio"); |
|
abe_pool = mempool_create_kmalloc_pool(1, sizeof(struct aio_batch_entry)); |
|
BUG_ON(!abe_pool); |
|
|
|
pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page)); |
|
|
|
return 0; |
|
} |
|
__initcall(aio_setup); |
|
|
|
static void aio_free_ring(struct kioctx *ctx) |
|
{ |
|
struct aio_ring_info *info = &ctx->ring_info; |
|
long i; |
|
|
|
for (i=0; i<info->nr_pages; i++) |
|
put_page(info->ring_pages[i]); |
|
|
|
if (info->mmap_size) { |
|
down_write(&ctx->mm->mmap_sem); |
|
do_munmap(ctx->mm, info->mmap_base, info->mmap_size); |
|
up_write(&ctx->mm->mmap_sem); |
|
} |
|
|
|
if (info->ring_pages && info->ring_pages != info->internal_pages) |
|
kfree(info->ring_pages); |
|
info->ring_pages = NULL; |
|
info->nr = 0; |
|
} |
|
|
|
static int aio_setup_ring(struct kioctx *ctx) |
|
{ |
|
struct aio_ring *ring; |
|
struct aio_ring_info *info = &ctx->ring_info; |
|
unsigned nr_events = ctx->max_reqs; |
|
unsigned long size; |
|
int nr_pages; |
|
|
|
/* Compensate for the ring buffer's head/tail overlap entry */ |
|
nr_events += 2; /* 1 is required, 2 for good luck */ |
|
|
|
size = sizeof(struct aio_ring); |
|
size += sizeof(struct io_event) * nr_events; |
|
nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT; |
|
|
|
if (nr_pages < 0) |
|
return -EINVAL; |
|
|
|
nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event); |
|
|
|
info->nr = 0; |
|
info->ring_pages = info->internal_pages; |
|
if (nr_pages > AIO_RING_PAGES) { |
|
info->ring_pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL); |
|
if (!info->ring_pages) |
|
return -ENOMEM; |
|
} |
|
|
|
info->mmap_size = nr_pages * PAGE_SIZE; |
|
dprintk("attempting mmap of %lu bytes\n", info->mmap_size); |
|
down_write(&ctx->mm->mmap_sem); |
|
info->mmap_base = do_mmap(NULL, 0, info->mmap_size, |
|
PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE, |
|
0); |
|
if (IS_ERR((void *)info->mmap_base)) { |
|
up_write(&ctx->mm->mmap_sem); |
|
info->mmap_size = 0; |
|
aio_free_ring(ctx); |
|
return -EAGAIN; |
|
} |
|
|
|
dprintk("mmap address: 0x%08lx\n", info->mmap_base); |
|
info->nr_pages = get_user_pages(current, ctx->mm, |
|
info->mmap_base, nr_pages, |
|
1, 0, info->ring_pages, NULL); |
|
up_write(&ctx->mm->mmap_sem); |
|
|
|
if (unlikely(info->nr_pages != nr_pages)) { |
|
aio_free_ring(ctx); |
|
return -EAGAIN; |
|
} |
|
|
|
ctx->user_id = info->mmap_base; |
|
|
|
info->nr = nr_events; /* trusted copy */ |
|
|
|
ring = kmap_atomic(info->ring_pages[0], KM_USER0); |
|
ring->nr = nr_events; /* user copy */ |
|
ring->id = ctx->user_id; |
|
ring->head = ring->tail = 0; |
|
ring->magic = AIO_RING_MAGIC; |
|
ring->compat_features = AIO_RING_COMPAT_FEATURES; |
|
ring->incompat_features = AIO_RING_INCOMPAT_FEATURES; |
|
ring->header_length = sizeof(struct aio_ring); |
|
kunmap_atomic(ring, KM_USER0); |
|
|
|
return 0; |
|
} |
|
|
|
|
|
/* aio_ring_event: returns a pointer to the event at the given index from |
|
* kmap_atomic(, km). Release the pointer with put_aio_ring_event(); |
|
*/ |
|
#define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event)) |
|
#define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event)) |
|
#define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE) |
|
|
|
#define aio_ring_event(info, nr, km) ({ \ |
|
unsigned pos = (nr) + AIO_EVENTS_OFFSET; \ |
|
struct io_event *__event; \ |
|
__event = kmap_atomic( \ |
|
(info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \ |
|
__event += pos % AIO_EVENTS_PER_PAGE; \ |
|
__event; \ |
|
}) |
|
|
|
#define put_aio_ring_event(event, km) do { \ |
|
struct io_event *__event = (event); \ |
|
(void)__event; \ |
|
kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \ |
|
} while(0) |
|
|
|
static void ctx_rcu_free(struct rcu_head *head) |
|
{ |
|
struct kioctx *ctx = container_of(head, struct kioctx, rcu_head); |
|
unsigned nr_events = ctx->max_reqs; |
|
|
|
kmem_cache_free(kioctx_cachep, ctx); |
|
|
|
if (nr_events) { |
|
spin_lock(&aio_nr_lock); |
|
BUG_ON(aio_nr - nr_events > aio_nr); |
|
aio_nr -= nr_events; |
|
spin_unlock(&aio_nr_lock); |
|
} |
|
} |
|
|
|
/* __put_ioctx |
|
* Called when the last user of an aio context has gone away, |
|
* and the struct needs to be freed. |
|
*/ |
|
static void __put_ioctx(struct kioctx *ctx) |
|
{ |
|
BUG_ON(ctx->reqs_active); |
|
|
|
cancel_delayed_work(&ctx->wq); |
|
cancel_work_sync(&ctx->wq.work); |
|
aio_free_ring(ctx); |
|
mmdrop(ctx->mm); |
|
ctx->mm = NULL; |
|
pr_debug("__put_ioctx: freeing %p\n", ctx); |
|
call_rcu(&ctx->rcu_head, ctx_rcu_free); |
|
} |
|
|
|
#define get_ioctx(kioctx) do { \ |
|
BUG_ON(atomic_read(&(kioctx)->users) <= 0); \ |
|
atomic_inc(&(kioctx)->users); \ |
|
} while (0) |
|
#define put_ioctx(kioctx) do { \ |
|
BUG_ON(atomic_read(&(kioctx)->users) <= 0); \ |
|
if (unlikely(atomic_dec_and_test(&(kioctx)->users))) \ |
|
__put_ioctx(kioctx); \ |
|
} while (0) |
|
|
|
/* ioctx_alloc |
|
* Allocates and initializes an ioctx. Returns an ERR_PTR if it failed. |
|
*/ |
|
static struct kioctx *ioctx_alloc(unsigned nr_events) |
|
{ |
|
struct mm_struct *mm; |
|
struct kioctx *ctx; |
|
int did_sync = 0; |
|
|
|
/* Prevent overflows */ |
|
if ((nr_events > (0x10000000U / sizeof(struct io_event))) || |
|
(nr_events > (0x10000000U / sizeof(struct kiocb)))) { |
|
pr_debug("ENOMEM: nr_events too high\n"); |
|
return ERR_PTR(-EINVAL); |
|
} |
|
|
|
if ((unsigned long)nr_events > aio_max_nr) |
|
return ERR_PTR(-EAGAIN); |
|
|
|
ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL); |
|
if (!ctx) |
|
return ERR_PTR(-ENOMEM); |
|
|
|
ctx->max_reqs = nr_events; |
|
mm = ctx->mm = current->mm; |
|
atomic_inc(&mm->mm_count); |
|
|
|
atomic_set(&ctx->users, 1); |
|
spin_lock_init(&ctx->ctx_lock); |
|
spin_lock_init(&ctx->ring_info.ring_lock); |
|
init_waitqueue_head(&ctx->wait); |
|
|
|
INIT_LIST_HEAD(&ctx->active_reqs); |
|
INIT_LIST_HEAD(&ctx->run_list); |
|
INIT_DELAYED_WORK(&ctx->wq, aio_kick_handler); |
|
|
|
if (aio_setup_ring(ctx) < 0) |
|
goto out_freectx; |
|
|
|
/* limit the number of system wide aios */ |
|
do { |
|
spin_lock_bh(&aio_nr_lock); |
|
if (aio_nr + nr_events > aio_max_nr || |
|
aio_nr + nr_events < aio_nr) |
|
ctx->max_reqs = 0; |
|
else |
|
aio_nr += ctx->max_reqs; |
|
spin_unlock_bh(&aio_nr_lock); |
|
if (ctx->max_reqs || did_sync) |
|
break; |
|
|
|
/* wait for rcu callbacks to have completed before giving up */ |
|
synchronize_rcu(); |
|
did_sync = 1; |
|
ctx->max_reqs = nr_events; |
|
} while (1); |
|
|
|
if (ctx->max_reqs == 0) |
|
goto out_cleanup; |
|
|
|
/* now link into global list. */ |
|
spin_lock(&mm->ioctx_lock); |
|
hlist_add_head_rcu(&ctx->list, &mm->ioctx_list); |
|
spin_unlock(&mm->ioctx_lock); |
|
|
|
dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n", |
|
ctx, ctx->user_id, current->mm, ctx->ring_info.nr); |
|
return ctx; |
|
|
|
out_cleanup: |
|
__put_ioctx(ctx); |
|
return ERR_PTR(-EAGAIN); |
|
|
|
out_freectx: |
|
mmdrop(mm); |
|
kmem_cache_free(kioctx_cachep, ctx); |
|
ctx = ERR_PTR(-ENOMEM); |
|
|
|
dprintk("aio: error allocating ioctx %p\n", ctx); |
|
return ctx; |
|
} |
|
|
|
/* aio_cancel_all |
|
* Cancels all outstanding aio requests on an aio context. Used |
|
* when the processes owning a context have all exited to encourage |
|
* the rapid destruction of the kioctx. |
|
*/ |
|
static void aio_cancel_all(struct kioctx *ctx) |
|
{ |
|
int (*cancel)(struct kiocb *, struct io_event *); |
|
struct io_event res; |
|
spin_lock_irq(&ctx->ctx_lock); |
|
ctx->dead = 1; |
|
while (!list_empty(&ctx->active_reqs)) { |
|
struct list_head *pos = ctx->active_reqs.next; |
|
struct kiocb *iocb = list_kiocb(pos); |
|
list_del_init(&iocb->ki_list); |
|
cancel = iocb->ki_cancel; |
|
kiocbSetCancelled(iocb); |
|
if (cancel) { |
|
iocb->ki_users++; |
|
spin_unlock_irq(&ctx->ctx_lock); |
|
cancel(iocb, &res); |
|
spin_lock_irq(&ctx->ctx_lock); |
|
} |
|
} |
|
spin_unlock_irq(&ctx->ctx_lock); |
|
} |
|
|
|
static void wait_for_all_aios(struct kioctx *ctx) |
|
{ |
|
struct task_struct *tsk = current; |
|
DECLARE_WAITQUEUE(wait, tsk); |
|
|
|
spin_lock_irq(&ctx->ctx_lock); |
|
if (!ctx->reqs_active) |
|
goto out; |
|
|
|
add_wait_queue(&ctx->wait, &wait); |
|
set_task_state(tsk, TASK_UNINTERRUPTIBLE); |
|
while (ctx->reqs_active) { |
|
spin_unlock_irq(&ctx->ctx_lock); |
|
io_schedule(); |
|
set_task_state(tsk, TASK_UNINTERRUPTIBLE); |
|
spin_lock_irq(&ctx->ctx_lock); |
|
} |
|
__set_task_state(tsk, TASK_RUNNING); |
|
remove_wait_queue(&ctx->wait, &wait); |
|
|
|
out: |
|
spin_unlock_irq(&ctx->ctx_lock); |
|
} |
|
|
|
/* wait_on_sync_kiocb: |
|
* Waits on the given sync kiocb to complete. |
|
*/ |
|
ssize_t wait_on_sync_kiocb(struct kiocb *iocb) |
|
{ |
|
while (iocb->ki_users) { |
|
set_current_state(TASK_UNINTERRUPTIBLE); |
|
if (!iocb->ki_users) |
|
break; |
|
io_schedule(); |
|
} |
|
__set_current_state(TASK_RUNNING); |
|
return iocb->ki_user_data; |
|
} |
|
EXPORT_SYMBOL(wait_on_sync_kiocb); |
|
|
|
/* exit_aio: called when the last user of mm goes away. At this point, |
|
* there is no way for any new requests to be submited or any of the |
|
* io_* syscalls to be called on the context. However, there may be |
|
* outstanding requests which hold references to the context; as they |
|
* go away, they will call put_ioctx and release any pinned memory |
|
* associated with the request (held via struct page * references). |
|
*/ |
|
void exit_aio(struct mm_struct *mm) |
|
{ |
|
struct kioctx *ctx; |
|
|
|
while (!hlist_empty(&mm->ioctx_list)) { |
|
ctx = hlist_entry(mm->ioctx_list.first, struct kioctx, list); |
|
hlist_del_rcu(&ctx->list); |
|
|
|
aio_cancel_all(ctx); |
|
|
|
wait_for_all_aios(ctx); |
|
/* |
|
* Ensure we don't leave the ctx on the aio_wq |
|
*/ |
|
cancel_work_sync(&ctx->wq.work); |
|
|
|
if (1 != atomic_read(&ctx->users)) |
|
printk(KERN_DEBUG |
|
"exit_aio:ioctx still alive: %d %d %d\n", |
|
atomic_read(&ctx->users), ctx->dead, |
|
ctx->reqs_active); |
|
put_ioctx(ctx); |
|
} |
|
} |
|
|
|
/* aio_get_req |
|
* Allocate a slot for an aio request. Increments the users count |
|
* of the kioctx so that the kioctx stays around until all requests are |
|
* complete. Returns NULL if no requests are free. |
|
* |
|
* Returns with kiocb->users set to 2. The io submit code path holds |
|
* an extra reference while submitting the i/o. |
|
* This prevents races between the aio code path referencing the |
|
* req (after submitting it) and aio_complete() freeing the req. |
|
*/ |
|
static struct kiocb *__aio_get_req(struct kioctx *ctx) |
|
{ |
|
struct kiocb *req = NULL; |
|
struct aio_ring *ring; |
|
int okay = 0; |
|
|
|
req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL); |
|
if (unlikely(!req)) |
|
return NULL; |
|
|
|
req->ki_flags = 0; |
|
req->ki_users = 2; |
|
req->ki_key = 0; |
|
req->ki_ctx = ctx; |
|
req->ki_cancel = NULL; |
|
req->ki_retry = NULL; |
|
req->ki_dtor = NULL; |
|
req->private = NULL; |
|
req->ki_iovec = NULL; |
|
INIT_LIST_HEAD(&req->ki_run_list); |
|
req->ki_eventfd = NULL; |
|
|
|
/* Check if the completion queue has enough free space to |
|
* accept an event from this io. |
|
*/ |
|
spin_lock_irq(&ctx->ctx_lock); |
|
ring = kmap_atomic(ctx->ring_info.ring_pages[0], KM_USER0); |
|
if (ctx->reqs_active < aio_ring_avail(&ctx->ring_info, ring)) { |
|
list_add(&req->ki_list, &ctx->active_reqs); |
|
ctx->reqs_active++; |
|
okay = 1; |
|
} |
|
kunmap_atomic(ring, KM_USER0); |
|
spin_unlock_irq(&ctx->ctx_lock); |
|
|
|
if (!okay) { |
|
kmem_cache_free(kiocb_cachep, req); |
|
req = NULL; |
|
} |
|
|
|
return req; |
|
} |
|
|
|
static inline struct kiocb *aio_get_req(struct kioctx *ctx) |
|
{ |
|
struct kiocb *req; |
|
/* Handle a potential starvation case -- should be exceedingly rare as |
|
* requests will be stuck on fput_head only if the aio_fput_routine is |
|
* delayed and the requests were the last user of the struct file. |
|
*/ |
|
req = __aio_get_req(ctx); |
|
if (unlikely(NULL == req)) { |
|
aio_fput_routine(NULL); |
|
req = __aio_get_req(ctx); |
|
} |
|
return req; |
|
} |
|
|
|
static inline void really_put_req(struct kioctx *ctx, struct kiocb *req) |
|
{ |
|
assert_spin_locked(&ctx->ctx_lock); |
|
|
|
if (req->ki_eventfd != NULL) |
|
eventfd_ctx_put(req->ki_eventfd); |
|
if (req->ki_dtor) |
|
req->ki_dtor(req); |
|
if (req->ki_iovec != &req->ki_inline_vec) |
|
kfree(req->ki_iovec); |
|
kmem_cache_free(kiocb_cachep, req); |
|
ctx->reqs_active--; |
|
|
|
if (unlikely(!ctx->reqs_active && ctx->dead)) |
|
wake_up(&ctx->wait); |
|
} |
|
|
|
static void aio_fput_routine(struct work_struct *data) |
|
{ |
|
spin_lock_irq(&fput_lock); |
|
while (likely(!list_empty(&fput_head))) { |
|
struct kiocb *req = list_kiocb(fput_head.next); |
|
struct kioctx *ctx = req->ki_ctx; |
|
|
|
list_del(&req->ki_list); |
|
spin_unlock_irq(&fput_lock); |
|
|
|
/* Complete the fput(s) */ |
|
if (req->ki_filp != NULL) |
|
fput(req->ki_filp); |
|
|
|
/* Link the iocb into the context's free list */ |
|
spin_lock_irq(&ctx->ctx_lock); |
|
really_put_req(ctx, req); |
|
spin_unlock_irq(&ctx->ctx_lock); |
|
|
|
put_ioctx(ctx); |
|
spin_lock_irq(&fput_lock); |
|
} |
|
spin_unlock_irq(&fput_lock); |
|
} |
|
|
|
/* __aio_put_req |
|
* Returns true if this put was the last user of the request. |
|
*/ |
|
static int __aio_put_req(struct kioctx *ctx, struct kiocb *req) |
|
{ |
|
dprintk(KERN_DEBUG "aio_put(%p): f_count=%ld\n", |
|
req, atomic_long_read(&req->ki_filp->f_count)); |
|
|
|
assert_spin_locked(&ctx->ctx_lock); |
|
|
|
req->ki_users--; |
|
BUG_ON(req->ki_users < 0); |
|
if (likely(req->ki_users)) |
|
return 0; |
|
list_del(&req->ki_list); /* remove from active_reqs */ |
|
req->ki_cancel = NULL; |
|
req->ki_retry = NULL; |
|
|
|
/* |
|
* Try to optimize the aio and eventfd file* puts, by avoiding to |
|
* schedule work in case it is not final fput() time. In normal cases, |
|
* we would not be holding the last reference to the file*, so |
|
* this function will be executed w/out any aio kthread wakeup. |
|
*/ |
|
if (unlikely(!fput_atomic(req->ki_filp))) { |
|
get_ioctx(ctx); |
|
spin_lock(&fput_lock); |
|
list_add(&req->ki_list, &fput_head); |
|
spin_unlock(&fput_lock); |
|
queue_work(aio_wq, &fput_work); |
|
} else { |
|
req->ki_filp = NULL; |
|
really_put_req(ctx, req); |
|
} |
|
return 1; |
|
} |
|
|
|
/* aio_put_req |
|
* Returns true if this put was the last user of the kiocb, |
|
* false if the request is still in use. |
|
*/ |
|
int aio_put_req(struct kiocb *req) |
|
{ |
|
struct kioctx *ctx = req->ki_ctx; |
|
int ret; |
|
spin_lock_irq(&ctx->ctx_lock); |
|
ret = __aio_put_req(ctx, req); |
|
spin_unlock_irq(&ctx->ctx_lock); |
|
return ret; |
|
} |
|
EXPORT_SYMBOL(aio_put_req); |
|
|
|
static struct kioctx *lookup_ioctx(unsigned long ctx_id) |
|
{ |
|
struct mm_struct *mm = current->mm; |
|
struct kioctx *ctx, *ret = NULL; |
|
struct hlist_node *n; |
|
|
|
rcu_read_lock(); |
|
|
|
hlist_for_each_entry_rcu(ctx, n, &mm->ioctx_list, list) { |
|
if (ctx->user_id == ctx_id && !ctx->dead) { |
|
get_ioctx(ctx); |
|
ret = ctx; |
|
break; |
|
} |
|
} |
|
|
|
rcu_read_unlock(); |
|
return ret; |
|
} |
|
|
|
/* |
|
* Queue up a kiocb to be retried. Assumes that the kiocb |
|
* has already been marked as kicked, and places it on |
|
* the retry run list for the corresponding ioctx, if it |
|
* isn't already queued. Returns 1 if it actually queued |
|
* the kiocb (to tell the caller to activate the work |
|
* queue to process it), or 0, if it found that it was |
|
* already queued. |
|
*/ |
|
static inline int __queue_kicked_iocb(struct kiocb *iocb) |
|
{ |
|
struct kioctx *ctx = iocb->ki_ctx; |
|
|
|
assert_spin_locked(&ctx->ctx_lock); |
|
|
|
if (list_empty(&iocb->ki_run_list)) { |
|
list_add_tail(&iocb->ki_run_list, |
|
&ctx->run_list); |
|
return 1; |
|
} |
|
return 0; |
|
} |
|
|
|
/* aio_run_iocb |
|
* This is the core aio execution routine. It is |
|
* invoked both for initial i/o submission and |
|
* subsequent retries via the aio_kick_handler. |
|
* Expects to be invoked with iocb->ki_ctx->lock |
|
* already held. The lock is released and reacquired |
|
* as needed during processing. |
|
* |
|
* Calls the iocb retry method (already setup for the |
|
* iocb on initial submission) for operation specific |
|
* handling, but takes care of most of common retry |
|
* execution details for a given iocb. The retry method |
|
* needs to be non-blocking as far as possible, to avoid |
|
* holding up other iocbs waiting to be serviced by the |
|
* retry kernel thread. |
|
* |
|
* The trickier parts in this code have to do with |
|
* ensuring that only one retry instance is in progress |
|
* for a given iocb at any time. Providing that guarantee |
|
* simplifies the coding of individual aio operations as |
|
* it avoids various potential races. |
|
*/ |
|
static ssize_t aio_run_iocb(struct kiocb *iocb) |
|
{ |
|
struct kioctx *ctx = iocb->ki_ctx; |
|
ssize_t (*retry)(struct kiocb *); |
|
ssize_t ret; |
|
|
|
if (!(retry = iocb->ki_retry)) { |
|
printk("aio_run_iocb: iocb->ki_retry = NULL\n"); |
|
return 0; |
|
} |
|
|
|
/* |
|
* We don't want the next retry iteration for this |
|
* operation to start until this one has returned and |
|
* updated the iocb state. However, wait_queue functions |
|
* can trigger a kick_iocb from interrupt context in the |
|
* meantime, indicating that data is available for the next |
|
* iteration. We want to remember that and enable the |
|
* next retry iteration _after_ we are through with |
|
* this one. |
|
* |
|
* So, in order to be able to register a "kick", but |
|
* prevent it from being queued now, we clear the kick |
|
* flag, but make the kick code *think* that the iocb is |
|
* still on the run list until we are actually done. |
|
* When we are done with this iteration, we check if |
|
* the iocb was kicked in the meantime and if so, queue |
|
* it up afresh. |
|
*/ |
|
|
|
kiocbClearKicked(iocb); |
|
|
|
/* |
|
* This is so that aio_complete knows it doesn't need to |
|
* pull the iocb off the run list (We can't just call |
|
* INIT_LIST_HEAD because we don't want a kick_iocb to |
|
* queue this on the run list yet) |
|
*/ |
|
iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL; |
|
spin_unlock_irq(&ctx->ctx_lock); |
|
|
|
/* Quit retrying if the i/o has been cancelled */ |
|
if (kiocbIsCancelled(iocb)) { |
|
ret = -EINTR; |
|
aio_complete(iocb, ret, 0); |
|
/* must not access the iocb after this */ |
|
goto out; |
|
} |
|
|
|
/* |
|
* Now we are all set to call the retry method in async |
|
* context. |
|
*/ |
|
ret = retry(iocb); |
|
|
|
if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED) |
|
aio_complete(iocb, ret, 0); |
|
out: |
|
spin_lock_irq(&ctx->ctx_lock); |
|
|
|
if (-EIOCBRETRY == ret) { |
|
/* |
|
* OK, now that we are done with this iteration |
|
* and know that there is more left to go, |
|
* this is where we let go so that a subsequent |
|
* "kick" can start the next iteration |
|
*/ |
|
|
|
/* will make __queue_kicked_iocb succeed from here on */ |
|
INIT_LIST_HEAD(&iocb->ki_run_list); |
|
/* we must queue the next iteration ourselves, if it |
|
* has already been kicked */ |
|
if (kiocbIsKicked(iocb)) { |
|
__queue_kicked_iocb(iocb); |
|
|
|
/* |
|
* __queue_kicked_iocb will always return 1 here, because |
|
* iocb->ki_run_list is empty at this point so it should |
|
* be safe to unconditionally queue the context into the |
|
* work queue. |
|
*/ |
|
aio_queue_work(ctx); |
|
} |
|
} |
|
return ret; |
|
} |
|
|
|
/* |
|
* __aio_run_iocbs: |
|
* Process all pending retries queued on the ioctx |
|
* run list. |
|
* Assumes it is operating within the aio issuer's mm |
|
* context. |
|
*/ |
|
static int __aio_run_iocbs(struct kioctx *ctx) |
|
{ |
|
struct kiocb *iocb; |
|
struct list_head run_list; |
|
|
|
assert_spin_locked(&ctx->ctx_lock); |
|
|
|
list_replace_init(&ctx->run_list, &run_list); |
|
while (!list_empty(&run_list)) { |
|
iocb = list_entry(run_list.next, struct kiocb, |
|
ki_run_list); |
|
list_del(&iocb->ki_run_list); |
|
/* |
|
* Hold an extra reference while retrying i/o. |
|
*/ |
|
iocb->ki_users++; /* grab extra reference */ |
|
aio_run_iocb(iocb); |
|
__aio_put_req(ctx, iocb); |
|
} |
|
if (!list_empty(&ctx->run_list)) |
|
return 1; |
|
return 0; |
|
} |
|
|
|
static void aio_queue_work(struct kioctx * ctx) |
|
{ |
|
unsigned long timeout; |
|
/* |
|
* if someone is waiting, get the work started right |
|
* away, otherwise, use a longer delay |
|
*/ |
|
smp_mb(); |
|
if (waitqueue_active(&ctx->wait)) |
|
timeout = 1; |
|
else |
|
timeout = HZ/10; |
|
queue_delayed_work(aio_wq, &ctx->wq, timeout); |
|
} |
|
|
|
|
|
/* |
|
* aio_run_iocbs: |
|
* Process all pending retries queued on the ioctx |
|
* run list. |
|
* Assumes it is operating within the aio issuer's mm |
|
* context. |
|
*/ |
|
static inline void aio_run_iocbs(struct kioctx *ctx) |
|
{ |
|
int requeue; |
|
|
|
spin_lock_irq(&ctx->ctx_lock); |
|
|
|
requeue = __aio_run_iocbs(ctx); |
|
spin_unlock_irq(&ctx->ctx_lock); |
|
if (requeue) |
|
aio_queue_work(ctx); |
|
} |
|
|
|
/* |
|
* just like aio_run_iocbs, but keeps running them until |
|
* the list stays empty |
|
*/ |
|
static inline void aio_run_all_iocbs(struct kioctx *ctx) |
|
{ |
|
spin_lock_irq(&ctx->ctx_lock); |
|
while (__aio_run_iocbs(ctx)) |
|
; |
|
spin_unlock_irq(&ctx->ctx_lock); |
|
} |
|
|
|
/* |
|
* aio_kick_handler: |
|
* Work queue handler triggered to process pending |
|
* retries on an ioctx. Takes on the aio issuer's |
|
* mm context before running the iocbs, so that |
|
* copy_xxx_user operates on the issuer's address |
|
* space. |
|
* Run on aiod's context. |
|
*/ |
|
static void aio_kick_handler(struct work_struct *work) |
|
{ |
|
struct kioctx *ctx = container_of(work, struct kioctx, wq.work); |
|
mm_segment_t oldfs = get_fs(); |
|
struct mm_struct *mm; |
|
int requeue; |
|
|
|
set_fs(USER_DS); |
|
use_mm(ctx->mm); |
|
spin_lock_irq(&ctx->ctx_lock); |
|
requeue =__aio_run_iocbs(ctx); |
|
mm = ctx->mm; |
|
spin_unlock_irq(&ctx->ctx_lock); |
|
unuse_mm(mm); |
|
set_fs(oldfs); |
|
/* |
|
* we're in a worker thread already, don't use queue_delayed_work, |
|
*/ |
|
if (requeue) |
|
queue_delayed_work(aio_wq, &ctx->wq, 0); |
|
} |
|
|
|
|
|
/* |
|
* Called by kick_iocb to queue the kiocb for retry |
|
* and if required activate the aio work queue to process |
|
* it |
|
*/ |
|
static void try_queue_kicked_iocb(struct kiocb *iocb) |
|
{ |
|
struct kioctx *ctx = iocb->ki_ctx; |
|
unsigned long flags; |
|
int run = 0; |
|
|
|
spin_lock_irqsave(&ctx->ctx_lock, flags); |
|
/* set this inside the lock so that we can't race with aio_run_iocb() |
|
* testing it and putting the iocb on the run list under the lock */ |
|
if (!kiocbTryKick(iocb)) |
|
run = __queue_kicked_iocb(iocb); |
|
spin_unlock_irqrestore(&ctx->ctx_lock, flags); |
|
if (run) |
|
aio_queue_work(ctx); |
|
} |
|
|
|
/* |
|
* kick_iocb: |
|
* Called typically from a wait queue callback context |
|
* to trigger a retry of the iocb. |
|
* The retry is usually executed by aio workqueue |
|
* threads (See aio_kick_handler). |
|
*/ |
|
void kick_iocb(struct kiocb *iocb) |
|
{ |
|
/* sync iocbs are easy: they can only ever be executing from a |
|
* single context. */ |
|
if (is_sync_kiocb(iocb)) { |
|
kiocbSetKicked(iocb); |
|
wake_up_process(iocb->ki_obj.tsk); |
|
return; |
|
} |
|
|
|
try_queue_kicked_iocb(iocb); |
|
} |
|
EXPORT_SYMBOL(kick_iocb); |
|
|
|
/* aio_complete |
|
* Called when the io request on the given iocb is complete. |
|
* Returns true if this is the last user of the request. The |
|
* only other user of the request can be the cancellation code. |
|
*/ |
|
int aio_complete(struct kiocb *iocb, long res, long res2) |
|
{ |
|
struct kioctx *ctx = iocb->ki_ctx; |
|
struct aio_ring_info *info; |
|
struct aio_ring *ring; |
|
struct io_event *event; |
|
unsigned long flags; |
|
unsigned long tail; |
|
int ret; |
|
|
|
/* |
|
* Special case handling for sync iocbs: |
|
* - events go directly into the iocb for fast handling |
|
* - the sync task with the iocb in its stack holds the single iocb |
|
* ref, no other paths have a way to get another ref |
|
* - the sync task helpfully left a reference to itself in the iocb |
|
*/ |
|
if (is_sync_kiocb(iocb)) { |
|
BUG_ON(iocb->ki_users != 1); |
|
iocb->ki_user_data = res; |
|
iocb->ki_users = 0; |
|
wake_up_process(iocb->ki_obj.tsk); |
|
return 1; |
|
} |
|
|
|
info = &ctx->ring_info; |
|
|
|
/* add a completion event to the ring buffer. |
|
* must be done holding ctx->ctx_lock to prevent |
|
* other code from messing with the tail |
|
* pointer since we might be called from irq |
|
* context. |
|
*/ |
|
spin_lock_irqsave(&ctx->ctx_lock, flags); |
|
|
|
if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list)) |
|
list_del_init(&iocb->ki_run_list); |
|
|
|
/* |
|
* cancelled requests don't get events, userland was given one |
|
* when the event got cancelled. |
|
*/ |
|
if (kiocbIsCancelled(iocb)) |
|
goto put_rq; |
|
|
|
ring = kmap_atomic(info->ring_pages[0], KM_IRQ1); |
|
|
|
tail = info->tail; |
|
event = aio_ring_event(info, tail, KM_IRQ0); |
|
if (++tail >= info->nr) |
|
tail = 0; |
|
|
|
event->obj = (u64)(unsigned long)iocb->ki_obj.user; |
|
event->data = iocb->ki_user_data; |
|
event->res = res; |
|
event->res2 = res2; |
|
|
|
dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n", |
|
ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data, |
|
res, res2); |
|
|
|
/* after flagging the request as done, we |
|
* must never even look at it again |
|
*/ |
|
smp_wmb(); /* make event visible before updating tail */ |
|
|
|
info->tail = tail; |
|
ring->tail = tail; |
|
|
|
put_aio_ring_event(event, KM_IRQ0); |
|
kunmap_atomic(ring, KM_IRQ1); |
|
|
|
pr_debug("added to ring %p at [%lu]\n", iocb, tail); |
|
|
|
/* |
|
* Check if the user asked us to deliver the result through an |
|
* eventfd. The eventfd_signal() function is safe to be called |
|
* from IRQ context. |
|
*/ |
|
if (iocb->ki_eventfd != NULL) |
|
eventfd_signal(iocb->ki_eventfd, 1); |
|
|
|
put_rq: |
|
/* everything turned out well, dispose of the aiocb. */ |
|
ret = __aio_put_req(ctx, iocb); |
|
|
|
/* |
|
* We have to order our ring_info tail store above and test |
|
* of the wait list below outside the wait lock. This is |
|
* like in wake_up_bit() where clearing a bit has to be |
|
* ordered with the unlocked test. |
|
*/ |
|
smp_mb(); |
|
|
|
if (waitqueue_active(&ctx->wait)) |
|
wake_up(&ctx->wait); |
|
|
|
spin_unlock_irqrestore(&ctx->ctx_lock, flags); |
|
return ret; |
|
} |
|
EXPORT_SYMBOL(aio_complete); |
|
|
|
/* aio_read_evt |
|
* Pull an event off of the ioctx's event ring. Returns the number of |
|
* events fetched (0 or 1 ;-) |
|
* FIXME: make this use cmpxchg. |
|
* TODO: make the ringbuffer user mmap()able (requires FIXME). |
|
*/ |
|
static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent) |
|
{ |
|
struct aio_ring_info *info = &ioctx->ring_info; |
|
struct aio_ring *ring; |
|
unsigned long head; |
|
int ret = 0; |
|
|
|
ring = kmap_atomic(info->ring_pages[0], KM_USER0); |
|
dprintk("in aio_read_evt h%lu t%lu m%lu\n", |
|
(unsigned long)ring->head, (unsigned long)ring->tail, |
|
(unsigned long)ring->nr); |
|
|
|
if (ring->head == ring->tail) |
|
goto out; |
|
|
|
spin_lock(&info->ring_lock); |
|
|
|
head = ring->head % info->nr; |
|
if (head != ring->tail) { |
|
struct io_event *evp = aio_ring_event(info, head, KM_USER1); |
|
*ent = *evp; |
|
head = (head + 1) % info->nr; |
|
smp_mb(); /* finish reading the event before updatng the head */ |
|
ring->head = head; |
|
ret = 1; |
|
put_aio_ring_event(evp, KM_USER1); |
|
} |
|
spin_unlock(&info->ring_lock); |
|
|
|
out: |
|
kunmap_atomic(ring, KM_USER0); |
|
dprintk("leaving aio_read_evt: %d h%lu t%lu\n", ret, |
|
(unsigned long)ring->head, (unsigned long)ring->tail); |
|
return ret; |
|
} |
|
|
|
struct aio_timeout { |
|
struct timer_list timer; |
|
int timed_out; |
|
struct task_struct *p; |
|
}; |
|
|
|
static void timeout_func(unsigned long data) |
|
{ |
|
struct aio_timeout *to = (struct aio_timeout *)data; |
|
|
|
to->timed_out = 1; |
|
wake_up_process(to->p); |
|
} |
|
|
|
static inline void init_timeout(struct aio_timeout *to) |
|
{ |
|
setup_timer_on_stack(&to->timer, timeout_func, (unsigned long) to); |
|
to->timed_out = 0; |
|
to->p = current; |
|
} |
|
|
|
static inline void set_timeout(long start_jiffies, struct aio_timeout *to, |
|
const struct timespec *ts) |
|
{ |
|
to->timer.expires = start_jiffies + timespec_to_jiffies(ts); |
|
if (time_after(to->timer.expires, jiffies)) |
|
add_timer(&to->timer); |
|
else |
|
to->timed_out = 1; |
|
} |
|
|
|
static inline void clear_timeout(struct aio_timeout *to) |
|
{ |
|
del_singleshot_timer_sync(&to->timer); |
|
} |
|
|
|
static int read_events(struct kioctx *ctx, |
|
long min_nr, long nr, |
|
struct io_event __user *event, |
|
struct timespec __user *timeout) |
|
{ |
|
long start_jiffies = jiffies; |
|
struct task_struct *tsk = current; |
|
DECLARE_WAITQUEUE(wait, tsk); |
|
int ret; |
|
int i = 0; |
|
struct io_event ent; |
|
struct aio_timeout to; |
|
int retry = 0; |
|
|
|
/* needed to zero any padding within an entry (there shouldn't be |
|
* any, but C is fun! |
|
*/ |
|
memset(&ent, 0, sizeof(ent)); |
|
retry: |
|
ret = 0; |
|
while (likely(i < nr)) { |
|
ret = aio_read_evt(ctx, &ent); |
|
if (unlikely(ret <= 0)) |
|
break; |
|
|
|
dprintk("read event: %Lx %Lx %Lx %Lx\n", |
|
ent.data, ent.obj, ent.res, ent.res2); |
|
|
|
/* Could we split the check in two? */ |
|
ret = -EFAULT; |
|
if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) { |
|
dprintk("aio: lost an event due to EFAULT.\n"); |
|
break; |
|
} |
|
ret = 0; |
|
|
|
/* Good, event copied to userland, update counts. */ |
|
event ++; |
|
i ++; |
|
} |
|
|
|
if (min_nr <= i) |
|
return i; |
|
if (ret) |
|
return ret; |
|
|
|
/* End fast path */ |
|
|
|
/* racey check, but it gets redone */ |
|
if (!retry && unlikely(!list_empty(&ctx->run_list))) { |
|
retry = 1; |
|
aio_run_all_iocbs(ctx); |
|
goto retry; |
|
} |
|
|
|
init_timeout(&to); |
|
if (timeout) { |
|
struct timespec ts; |
|
ret = -EFAULT; |
|
if (unlikely(copy_from_user(&ts, timeout, sizeof(ts)))) |
|
goto out; |
|
|
|
set_timeout(start_jiffies, &to, &ts); |
|
} |
|
|
|
while (likely(i < nr)) { |
|
add_wait_queue_exclusive(&ctx->wait, &wait); |
|
do { |
|
set_task_state(tsk, TASK_INTERRUPTIBLE); |
|
ret = aio_read_evt(ctx, &ent); |
|
if (ret) |
|
break; |
|
if (min_nr <= i) |
|
break; |
|
if (unlikely(ctx->dead)) { |
|
ret = -EINVAL; |
|
break; |
|
} |
|
if (to.timed_out) /* Only check after read evt */ |
|
break; |
|
/* Try to only show up in io wait if there are ops |
|
* in flight */ |
|
if (ctx->reqs_active) |
|
io_schedule(); |
|
else |
|
schedule(); |
|
if (signal_pending(tsk)) { |
|
ret = -EINTR; |
|
break; |
|
} |
|
/*ret = aio_read_evt(ctx, &ent);*/ |
|
} while (1) ; |
|
|
|
set_task_state(tsk, TASK_RUNNING); |
|
remove_wait_queue(&ctx->wait, &wait); |
|
|
|
if (unlikely(ret <= 0)) |
|
break; |
|
|
|
ret = -EFAULT; |
|
if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) { |
|
dprintk("aio: lost an event due to EFAULT.\n"); |
|
break; |
|
} |
|
|
|
/* Good, event copied to userland, update counts. */ |
|
event ++; |
|
i ++; |
|
} |
|
|
|
if (timeout) |
|
clear_timeout(&to); |
|
out: |
|
destroy_timer_on_stack(&to.timer); |
|
return i ? i : ret; |
|
} |
|
|
|
/* Take an ioctx and remove it from the list of ioctx's. Protects |
|
* against races with itself via ->dead. |
|
*/ |
|
static void io_destroy(struct kioctx *ioctx) |
|
{ |
|
struct mm_struct *mm = current->mm; |
|
int was_dead; |
|
|
|
/* delete the entry from the list is someone else hasn't already */ |
|
spin_lock(&mm->ioctx_lock); |
|
was_dead = ioctx->dead; |
|
ioctx->dead = 1; |
|
hlist_del_rcu(&ioctx->list); |
|
spin_unlock(&mm->ioctx_lock); |
|
|
|
dprintk("aio_release(%p)\n", ioctx); |
|
if (likely(!was_dead)) |
|
put_ioctx(ioctx); /* twice for the list */ |
|
|
|
aio_cancel_all(ioctx); |
|
wait_for_all_aios(ioctx); |
|
|
|
/* |
|
* Wake up any waiters. The setting of ctx->dead must be seen |
|
* by other CPUs at this point. Right now, we rely on the |
|
* locking done by the above calls to ensure this consistency. |
|
*/ |
|
wake_up(&ioctx->wait); |
|
put_ioctx(ioctx); /* once for the lookup */ |
|
} |
|
|
|
/* sys_io_setup: |
|
* Create an aio_context capable of receiving at least nr_events. |
|
* ctxp must not point to an aio_context that already exists, and |
|
* must be initialized to 0 prior to the call. On successful |
|
* creation of the aio_context, *ctxp is filled in with the resulting |
|
* handle. May fail with -EINVAL if *ctxp is not initialized, |
|
* if the specified nr_events exceeds internal limits. May fail |
|
* with -EAGAIN if the specified nr_events exceeds the user's limit |
|
* of available events. May fail with -ENOMEM if insufficient kernel |
|
* resources are available. May fail with -EFAULT if an invalid |
|
* pointer is passed for ctxp. Will fail with -ENOSYS if not |
|
* implemented. |
|
*/ |
|
SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp) |
|
{ |
|
struct kioctx *ioctx = NULL; |
|
unsigned long ctx; |
|
long ret; |
|
|
|
ret = get_user(ctx, ctxp); |
|
if (unlikely(ret)) |
|
goto out; |
|
|
|
ret = -EINVAL; |
|
if (unlikely(ctx || nr_events == 0)) { |
|
pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n", |
|
ctx, nr_events); |
|
goto out; |
|
} |
|
|
|
ioctx = ioctx_alloc(nr_events); |
|
ret = PTR_ERR(ioctx); |
|
if (!IS_ERR(ioctx)) { |
|
ret = put_user(ioctx->user_id, ctxp); |
|
if (!ret) |
|
return 0; |
|
|
|
get_ioctx(ioctx); /* io_destroy() expects us to hold a ref */ |
|
io_destroy(ioctx); |
|
} |
|
|
|
out: |
|
return ret; |
|
} |
|
|
|
/* sys_io_destroy: |
|
* Destroy the aio_context specified. May cancel any outstanding |
|
* AIOs and block on completion. Will fail with -ENOSYS if not |
|
* implemented. May fail with -EFAULT if the context pointed to |
|
* is invalid. |
|
*/ |
|
SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx) |
|
{ |
|
struct kioctx *ioctx = lookup_ioctx(ctx); |
|
if (likely(NULL != ioctx)) { |
|
io_destroy(ioctx); |
|
return 0; |
|
} |
|
pr_debug("EINVAL: io_destroy: invalid context id\n"); |
|
return -EINVAL; |
|
} |
|
|
|
static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret) |
|
{ |
|
struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg]; |
|
|
|
BUG_ON(ret <= 0); |
|
|
|
while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) { |
|
ssize_t this = min((ssize_t)iov->iov_len, ret); |
|
iov->iov_base += this; |
|
iov->iov_len -= this; |
|
iocb->ki_left -= this; |
|
ret -= this; |
|
if (iov->iov_len == 0) { |
|
iocb->ki_cur_seg++; |
|
iov++; |
|
} |
|
} |
|
|
|
/* the caller should not have done more io than what fit in |
|
* the remaining iovecs */ |
|
BUG_ON(ret > 0 && iocb->ki_left == 0); |
|
} |
|
|
|
static ssize_t aio_rw_vect_retry(struct kiocb *iocb) |
|
{ |
|
struct file *file = iocb->ki_filp; |
|
struct address_space *mapping = file->f_mapping; |
|
struct inode *inode = mapping->host; |
|
ssize_t (*rw_op)(struct kiocb *, const struct iovec *, |
|
unsigned long, loff_t); |
|
ssize_t ret = 0; |
|
unsigned short opcode; |
|
|
|
if ((iocb->ki_opcode == IOCB_CMD_PREADV) || |
|
(iocb->ki_opcode == IOCB_CMD_PREAD)) { |
|
rw_op = file->f_op->aio_read; |
|
opcode = IOCB_CMD_PREADV; |
|
} else { |
|
rw_op = file->f_op->aio_write; |
|
opcode = IOCB_CMD_PWRITEV; |
|
} |
|
|
|
/* This matches the pread()/pwrite() logic */ |
|
if (iocb->ki_pos < 0) |
|
return -EINVAL; |
|
|
|
do { |
|
ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg], |
|
iocb->ki_nr_segs - iocb->ki_cur_seg, |
|
iocb->ki_pos); |
|
if (ret > 0) |
|
aio_advance_iovec(iocb, ret); |
|
|
|
/* retry all partial writes. retry partial reads as long as its a |
|
* regular file. */ |
|
} while (ret > 0 && iocb->ki_left > 0 && |
|
(opcode == IOCB_CMD_PWRITEV || |
|
(!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode)))); |
|
|
|
/* This means we must have transferred all that we could */ |
|
/* No need to retry anymore */ |
|
if ((ret == 0) || (iocb->ki_left == 0)) |
|
ret = iocb->ki_nbytes - iocb->ki_left; |
|
|
|
/* If we managed to write some out we return that, rather than |
|
* the eventual error. */ |
|
if (opcode == IOCB_CMD_PWRITEV |
|
&& ret < 0 && ret != -EIOCBQUEUED && ret != -EIOCBRETRY |
|
&& iocb->ki_nbytes - iocb->ki_left) |
|
ret = iocb->ki_nbytes - iocb->ki_left; |
|
|
|
return ret; |
|
} |
|
|
|
static ssize_t aio_fdsync(struct kiocb *iocb) |
|
{ |
|
struct file *file = iocb->ki_filp; |
|
ssize_t ret = -EINVAL; |
|
|
|
if (file->f_op->aio_fsync) |
|
ret = file->f_op->aio_fsync(iocb, 1); |
|
return ret; |
|
} |
|
|
|
static ssize_t aio_fsync(struct kiocb *iocb) |
|
{ |
|
struct file *file = iocb->ki_filp; |
|
ssize_t ret = -EINVAL; |
|
|
|
if (file->f_op->aio_fsync) |
|
ret = file->f_op->aio_fsync(iocb, 0); |
|
return ret; |
|
} |
|
|
|
static ssize_t aio_setup_vectored_rw(int type, struct kiocb *kiocb, bool compat) |
|
{ |
|
ssize_t ret; |
|
|
|
#ifdef CONFIG_COMPAT |
|
if (compat) |
|
ret = compat_rw_copy_check_uvector(type, |
|
(struct compat_iovec __user *)kiocb->ki_buf, |
|
kiocb->ki_nbytes, 1, &kiocb->ki_inline_vec, |
|
&kiocb->ki_iovec); |
|
else |
|
#endif |
|
ret = rw_copy_check_uvector(type, |
|
(struct iovec __user *)kiocb->ki_buf, |
|
kiocb->ki_nbytes, 1, &kiocb->ki_inline_vec, |
|
&kiocb->ki_iovec); |
|
if (ret < 0) |
|
goto out; |
|
|
|
kiocb->ki_nr_segs = kiocb->ki_nbytes; |
|
kiocb->ki_cur_seg = 0; |
|
/* ki_nbytes/left now reflect bytes instead of segs */ |
|
kiocb->ki_nbytes = ret; |
|
kiocb->ki_left = ret; |
|
|
|
ret = 0; |
|
out: |
|
return ret; |
|
} |
|
|
|
static ssize_t aio_setup_single_vector(struct kiocb *kiocb) |
|
{ |
|
kiocb->ki_iovec = &kiocb->ki_inline_vec; |
|
kiocb->ki_iovec->iov_base = kiocb->ki_buf; |
|
kiocb->ki_iovec->iov_len = kiocb->ki_left; |
|
kiocb->ki_nr_segs = 1; |
|
kiocb->ki_cur_seg = 0; |
|
return 0; |
|
} |
|
|
|
/* |
|
* aio_setup_iocb: |
|
* Performs the initial checks and aio retry method |
|
* setup for the kiocb at the time of io submission. |
|
*/ |
|
static ssize_t aio_setup_iocb(struct kiocb *kiocb, bool compat) |
|
{ |
|
struct file *file = kiocb->ki_filp; |
|
ssize_t ret = 0; |
|
|
|
switch (kiocb->ki_opcode) { |
|
case IOCB_CMD_PREAD: |
|
ret = -EBADF; |
|
if (unlikely(!(file->f_mode & FMODE_READ))) |
|
break; |
|
ret = -EFAULT; |
|
if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf, |
|
kiocb->ki_left))) |
|
break; |
|
ret = security_file_permission(file, MAY_READ); |
|
if (unlikely(ret)) |
|
break; |
|
ret = aio_setup_single_vector(kiocb); |
|
if (ret) |
|
break; |
|
ret = -EINVAL; |
|
if (file->f_op->aio_read) |
|
kiocb->ki_retry = aio_rw_vect_retry; |
|
break; |
|
case IOCB_CMD_PWRITE: |
|
ret = -EBADF; |
|
if (unlikely(!(file->f_mode & FMODE_WRITE))) |
|
break; |
|
ret = -EFAULT; |
|
if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf, |
|
kiocb->ki_left))) |
|
break; |
|
ret = security_file_permission(file, MAY_WRITE); |
|
if (unlikely(ret)) |
|
break; |
|
ret = aio_setup_single_vector(kiocb); |
|
if (ret) |
|
break; |
|
ret = -EINVAL; |
|
if (file->f_op->aio_write) |
|
kiocb->ki_retry = aio_rw_vect_retry; |
|
break; |
|
case IOCB_CMD_PREADV: |
|
ret = -EBADF; |
|
if (unlikely(!(file->f_mode & FMODE_READ))) |
|
break; |
|
ret = security_file_permission(file, MAY_READ); |
|
if (unlikely(ret)) |
|
break; |
|
ret = aio_setup_vectored_rw(READ, kiocb, compat); |
|
if (ret) |
|
break; |
|
ret = -EINVAL; |
|
if (file->f_op->aio_read) |
|
kiocb->ki_retry = aio_rw_vect_retry; |
|
break; |
|
case IOCB_CMD_PWRITEV: |
|
ret = -EBADF; |
|
if (unlikely(!(file->f_mode & FMODE_WRITE))) |
|
break; |
|
ret = security_file_permission(file, MAY_WRITE); |
|
if (unlikely(ret)) |
|
break; |
|
ret = aio_setup_vectored_rw(WRITE, kiocb, compat); |
|
if (ret) |
|
break; |
|
ret = -EINVAL; |
|
if (file->f_op->aio_write) |
|
kiocb->ki_retry = aio_rw_vect_retry; |
|
break; |
|
case IOCB_CMD_FDSYNC: |
|
ret = -EINVAL; |
|
if (file->f_op->aio_fsync) |
|
kiocb->ki_retry = aio_fdsync; |
|
break; |
|
case IOCB_CMD_FSYNC: |
|
ret = -EINVAL; |
|
if (file->f_op->aio_fsync) |
|
kiocb->ki_retry = aio_fsync; |
|
break; |
|
default: |
|
dprintk("EINVAL: io_submit: no operation provided\n"); |
|
ret = -EINVAL; |
|
} |
|
|
|
if (!kiocb->ki_retry) |
|
return ret; |
|
|
|
return 0; |
|
} |
|
|
|
static void aio_batch_add(struct address_space *mapping, |
|
struct hlist_head *batch_hash) |
|
{ |
|
struct aio_batch_entry *abe; |
|
struct hlist_node *pos; |
|
unsigned bucket; |
|
|
|
bucket = hash_ptr(mapping, AIO_BATCH_HASH_BITS); |
|
hlist_for_each_entry(abe, pos, &batch_hash[bucket], list) { |
|
if (abe->mapping == mapping) |
|
return; |
|
} |
|
|
|
abe = mempool_alloc(abe_pool, GFP_KERNEL); |
|
BUG_ON(!igrab(mapping->host)); |
|
abe->mapping = mapping; |
|
hlist_add_head(&abe->list, &batch_hash[bucket]); |
|
return; |
|
} |
|
|
|
static void aio_batch_free(struct hlist_head *batch_hash) |
|
{ |
|
struct aio_batch_entry *abe; |
|
struct hlist_node *pos, *n; |
|
int i; |
|
|
|
for (i = 0; i < AIO_BATCH_HASH_SIZE; i++) { |
|
hlist_for_each_entry_safe(abe, pos, n, &batch_hash[i], list) { |
|
blk_run_address_space(abe->mapping); |
|
iput(abe->mapping->host); |
|
hlist_del(&abe->list); |
|
mempool_free(abe, abe_pool); |
|
} |
|
} |
|
} |
|
|
|
static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb, |
|
struct iocb *iocb, struct hlist_head *batch_hash, |
|
bool compat) |
|
{ |
|
struct kiocb *req; |
|
struct file *file; |
|
ssize_t ret; |
|
|
|
/* enforce forwards compatibility on users */ |
|
if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) { |
|
pr_debug("EINVAL: io_submit: reserve field set\n"); |
|
return -EINVAL; |
|
} |
|
|
|
/* prevent overflows */ |
|
if (unlikely( |
|
(iocb->aio_buf != (unsigned long)iocb->aio_buf) || |
|
(iocb->aio_nbytes != (size_t)iocb->aio_nbytes) || |
|
((ssize_t)iocb->aio_nbytes < 0) |
|
)) { |
|
pr_debug("EINVAL: io_submit: overflow check\n"); |
|
return -EINVAL; |
|
} |
|
|
|
file = fget(iocb->aio_fildes); |
|
if (unlikely(!file)) |
|
return -EBADF; |
|
|
|
req = aio_get_req(ctx); /* returns with 2 references to req */ |
|
if (unlikely(!req)) { |
|
fput(file); |
|
return -EAGAIN; |
|
} |
|
req->ki_filp = file; |
|
if (iocb->aio_flags & IOCB_FLAG_RESFD) { |
|
/* |
|
* If the IOCB_FLAG_RESFD flag of aio_flags is set, get an |
|
* instance of the file* now. The file descriptor must be |
|
* an eventfd() fd, and will be signaled for each completed |
|
* event using the eventfd_signal() function. |
|
*/ |
|
req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd); |
|
if (IS_ERR(req->ki_eventfd)) { |
|
ret = PTR_ERR(req->ki_eventfd); |
|
req->ki_eventfd = NULL; |
|
goto out_put_req; |
|
} |
|
} |
|
|
|
ret = put_user(req->ki_key, &user_iocb->aio_key); |
|
if (unlikely(ret)) { |
|
dprintk("EFAULT: aio_key\n"); |
|
goto out_put_req; |
|
} |
|
|
|
req->ki_obj.user = user_iocb; |
|
req->ki_user_data = iocb->aio_data; |
|
req->ki_pos = iocb->aio_offset; |
|
|
|
req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf; |
|
req->ki_left = req->ki_nbytes = iocb->aio_nbytes; |
|
req->ki_opcode = iocb->aio_lio_opcode; |
|
|
|
ret = aio_setup_iocb(req, compat); |
|
|
|
if (ret) |
|
goto out_put_req; |
|
|
|
spin_lock_irq(&ctx->ctx_lock); |
|
aio_run_iocb(req); |
|
if (!list_empty(&ctx->run_list)) { |
|
/* drain the run list */ |
|
while (__aio_run_iocbs(ctx)) |
|
; |
|
} |
|
spin_unlock_irq(&ctx->ctx_lock); |
|
if (req->ki_opcode == IOCB_CMD_PREAD || |
|
req->ki_opcode == IOCB_CMD_PREADV || |
|
req->ki_opcode == IOCB_CMD_PWRITE || |
|
req->ki_opcode == IOCB_CMD_PWRITEV) |
|
aio_batch_add(file->f_mapping, batch_hash); |
|
|
|
aio_put_req(req); /* drop extra ref to req */ |
|
return 0; |
|
|
|
out_put_req: |
|
aio_put_req(req); /* drop extra ref to req */ |
|
aio_put_req(req); /* drop i/o ref to req */ |
|
return ret; |
|
} |
|
|
|
long do_io_submit(aio_context_t ctx_id, long nr, |
|
struct iocb __user *__user *iocbpp, bool compat) |
|
{ |
|
struct kioctx *ctx; |
|
long ret = 0; |
|
int i; |
|
struct hlist_head batch_hash[AIO_BATCH_HASH_SIZE] = { { 0, }, }; |
|
|
|
if (unlikely(nr < 0)) |
|
return -EINVAL; |
|
|
|
if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp))))) |
|
return -EFAULT; |
|
|
|
ctx = lookup_ioctx(ctx_id); |
|
if (unlikely(!ctx)) { |
|
pr_debug("EINVAL: io_submit: invalid context id\n"); |
|
return -EINVAL; |
|
} |
|
|
|
/* |
|
* AKPM: should this return a partial result if some of the IOs were |
|
* successfully submitted? |
|
*/ |
|
for (i=0; i<nr; i++) { |
|
struct iocb __user *user_iocb; |
|
struct iocb tmp; |
|
|
|
if (unlikely(__get_user(user_iocb, iocbpp + i))) { |
|
ret = -EFAULT; |
|
break; |
|
} |
|
|
|
if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) { |
|
ret = -EFAULT; |
|
break; |
|
} |
|
|
|
ret = io_submit_one(ctx, user_iocb, &tmp, batch_hash, compat); |
|
if (ret) |
|
break; |
|
} |
|
aio_batch_free(batch_hash); |
|
|
|
put_ioctx(ctx); |
|
return i ? i : ret; |
|
} |
|
|
|
/* sys_io_submit: |
|
* Queue the nr iocbs pointed to by iocbpp for processing. Returns |
|
* the number of iocbs queued. May return -EINVAL if the aio_context |
|
* specified by ctx_id is invalid, if nr is < 0, if the iocb at |
|
* *iocbpp[0] is not properly initialized, if the operation specified |
|
* is invalid for the file descriptor in the iocb. May fail with |
|
* -EFAULT if any of the data structures point to invalid data. May |
|
* fail with -EBADF if the file descriptor specified in the first |
|
* iocb is invalid. May fail with -EAGAIN if insufficient resources |
|
* are available to queue any iocbs. Will return 0 if nr is 0. Will |
|
* fail with -ENOSYS if not implemented. |
|
*/ |
|
SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr, |
|
struct iocb __user * __user *, iocbpp) |
|
{ |
|
return do_io_submit(ctx_id, nr, iocbpp, 0); |
|
} |
|
|
|
/* lookup_kiocb |
|
* Finds a given iocb for cancellation. |
|
*/ |
|
static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, |
|
u32 key) |
|
{ |
|
struct list_head *pos; |
|
|
|
assert_spin_locked(&ctx->ctx_lock); |
|
|
|
/* TODO: use a hash or array, this sucks. */ |
|
list_for_each(pos, &ctx->active_reqs) { |
|
struct kiocb *kiocb = list_kiocb(pos); |
|
if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key) |
|
return kiocb; |
|
} |
|
return NULL; |
|
} |
|
|
|
/* sys_io_cancel: |
|
* Attempts to cancel an iocb previously passed to io_submit. If |
|
* the operation is successfully cancelled, the resulting event is |
|
* copied into the memory pointed to by result without being placed |
|
* into the completion queue and 0 is returned. May fail with |
|
* -EFAULT if any of the data structures pointed to are invalid. |
|
* May fail with -EINVAL if aio_context specified by ctx_id is |
|
* invalid. May fail with -EAGAIN if the iocb specified was not |
|
* cancelled. Will fail with -ENOSYS if not implemented. |
|
*/ |
|
SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb, |
|
struct io_event __user *, result) |
|
{ |
|
int (*cancel)(struct kiocb *iocb, struct io_event *res); |
|
struct kioctx *ctx; |
|
struct kiocb *kiocb; |
|
u32 key; |
|
int ret; |
|
|
|
ret = get_user(key, &iocb->aio_key); |
|
if (unlikely(ret)) |
|
return -EFAULT; |
|
|
|
ctx = lookup_ioctx(ctx_id); |
|
if (unlikely(!ctx)) |
|
return -EINVAL; |
|
|
|
spin_lock_irq(&ctx->ctx_lock); |
|
ret = -EAGAIN; |
|
kiocb = lookup_kiocb(ctx, iocb, key); |
|
if (kiocb && kiocb->ki_cancel) { |
|
cancel = kiocb->ki_cancel; |
|
kiocb->ki_users ++; |
|
kiocbSetCancelled(kiocb); |
|
} else |
|
cancel = NULL; |
|
spin_unlock_irq(&ctx->ctx_lock); |
|
|
|
if (NULL != cancel) { |
|
struct io_event tmp; |
|
pr_debug("calling cancel\n"); |
|
memset(&tmp, 0, sizeof(tmp)); |
|
tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user; |
|
tmp.data = kiocb->ki_user_data; |
|
ret = cancel(kiocb, &tmp); |
|
if (!ret) { |
|
/* Cancellation succeeded -- copy the result |
|
* into the user's buffer. |
|
*/ |
|
if (copy_to_user(result, &tmp, sizeof(tmp))) |
|
ret = -EFAULT; |
|
} |
|
} else |
|
ret = -EINVAL; |
|
|
|
put_ioctx(ctx); |
|
|
|
return ret; |
|
} |
|
|
|
/* io_getevents: |
|
* Attempts to read at least min_nr events and up to nr events from |
|
* the completion queue for the aio_context specified by ctx_id. May |
|
* fail with -EINVAL if ctx_id is invalid, if min_nr is out of range, |
|
* if nr is out of range, if when is out of range. May fail with |
|
* -EFAULT if any of the memory specified to is invalid. May return |
|
* 0 or < min_nr if no events are available and the timeout specified |
|
* by when has elapsed, where when == NULL specifies an infinite |
|
* timeout. Note that the timeout pointed to by when is relative and |
|
* will be updated if not NULL and the operation blocks. Will fail |
|
* with -ENOSYS if not implemented. |
|
*/ |
|
SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id, |
|
long, min_nr, |
|
long, nr, |
|
struct io_event __user *, events, |
|
struct timespec __user *, timeout) |
|
{ |
|
struct kioctx *ioctx = lookup_ioctx(ctx_id); |
|
long ret = -EINVAL; |
|
|
|
if (likely(ioctx)) { |
|
if (likely(min_nr <= nr && min_nr >= 0 && nr >= 0)) |
|
ret = read_events(ioctx, min_nr, nr, events, timeout); |
|
put_ioctx(ioctx); |
|
} |
|
|
|
asmlinkage_protect(5, ret, ctx_id, min_nr, nr, events, timeout); |
|
return ret; |
|
}
|
|
|