original development tree for Linux kernel GTP module; now long in mainline.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

786 lines
24 KiB

#ifndef _LINUX_KERNEL_H
#define _LINUX_KERNEL_H
/*
* 'kernel.h' contains some often-used function prototypes etc
*/
#define __ALIGN_KERNEL(x, a) __ALIGN_KERNEL_MASK(x, (typeof(x))(a) - 1)
#define __ALIGN_KERNEL_MASK(x, mask) (((x) + (mask)) & ~(mask))
#ifdef __KERNEL__
#include <stdarg.h>
#include <linux/linkage.h>
#include <linux/stddef.h>
#include <linux/types.h>
#include <linux/compiler.h>
#include <linux/bitops.h>
#include <linux/log2.h>
#include <linux/typecheck.h>
#include <linux/printk.h>
#include <linux/dynamic_debug.h>
#include <asm/byteorder.h>
#include <asm/bug.h>
#define USHRT_MAX ((u16)(~0U))
#define SHRT_MAX ((s16)(USHRT_MAX>>1))
#define SHRT_MIN ((s16)(-SHRT_MAX - 1))
#define INT_MAX ((int)(~0U>>1))
#define INT_MIN (-INT_MAX - 1)
#define UINT_MAX (~0U)
#define LONG_MAX ((long)(~0UL>>1))
#define LONG_MIN (-LONG_MAX - 1)
#define ULONG_MAX (~0UL)
#define LLONG_MAX ((long long)(~0ULL>>1))
#define LLONG_MIN (-LLONG_MAX - 1)
#define ULLONG_MAX (~0ULL)
#define STACK_MAGIC 0xdeadbeef
#define ALIGN(x, a) __ALIGN_KERNEL((x), (a))
#define __ALIGN_MASK(x, mask) __ALIGN_KERNEL_MASK((x), (mask))
#define PTR_ALIGN(p, a) ((typeof(p))ALIGN((unsigned long)(p), (a)))
#define IS_ALIGNED(x, a) (((x) & ((typeof(x))(a) - 1)) == 0)
#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]) + __must_be_array(arr))
/*
* This looks more complex than it should be. But we need to
* get the type for the ~ right in round_down (it needs to be
* as wide as the result!), and we want to evaluate the macro
* arguments just once each.
*/
#define __round_mask(x, y) ((__typeof__(x))((y)-1))
#define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1)
#define round_down(x, y) ((x) & ~__round_mask(x, y))
#define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f))
#define DIV_ROUND_UP(n,d) (((n) + (d) - 1) / (d))
#define DIV_ROUND_UP_ULL(ll,d) \
({ unsigned long long _tmp = (ll)+(d)-1; do_div(_tmp, d); _tmp; })
#if BITS_PER_LONG == 32
# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d)
#else
# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d)
#endif
/* The `const' in roundup() prevents gcc-3.3 from calling __divdi3 */
#define roundup(x, y) ( \
{ \
const typeof(y) __y = y; \
(((x) + (__y - 1)) / __y) * __y; \
} \
)
#define rounddown(x, y) ( \
{ \
typeof(x) __x = (x); \
__x - (__x % (y)); \
} \
)
#define DIV_ROUND_CLOSEST(x, divisor)( \
{ \
typeof(divisor) __divisor = divisor; \
(((x) + ((__divisor) / 2)) / (__divisor)); \
} \
)
/*
* Multiplies an integer by a fraction, while avoiding unnecessary
* overflow or loss of precision.
*/
#define mult_frac(x, numer, denom)( \
{ \
typeof(x) quot = (x) / (denom); \
typeof(x) rem = (x) % (denom); \
(quot * (numer)) + ((rem * (numer)) / (denom)); \
} \
)
#define _RET_IP_ (unsigned long)__builtin_return_address(0)
#define _THIS_IP_ ({ __label__ __here; __here: (unsigned long)&&__here; })
#ifdef CONFIG_LBDAF
# include <asm/div64.h>
# define sector_div(a, b) do_div(a, b)
#else
# define sector_div(n, b)( \
{ \
int _res; \
_res = (n) % (b); \
(n) /= (b); \
_res; \
} \
)
#endif
/**
* upper_32_bits - return bits 32-63 of a number
* @n: the number we're accessing
*
* A basic shift-right of a 64- or 32-bit quantity. Use this to suppress
* the "right shift count >= width of type" warning when that quantity is
* 32-bits.
*/
#define upper_32_bits(n) ((u32)(((n) >> 16) >> 16))
/**
* lower_32_bits - return bits 0-31 of a number
* @n: the number we're accessing
*/
#define lower_32_bits(n) ((u32)(n))
struct completion;
struct pt_regs;
struct user;
#ifdef CONFIG_PREEMPT_VOLUNTARY
extern int _cond_resched(void);
# define might_resched() _cond_resched()
#else
# define might_resched() do { } while (0)
#endif
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
void __might_sleep(const char *file, int line, int preempt_offset);
/**
* might_sleep - annotation for functions that can sleep
*
* this macro will print a stack trace if it is executed in an atomic
* context (spinlock, irq-handler, ...).
*
* This is a useful debugging help to be able to catch problems early and not
* be bitten later when the calling function happens to sleep when it is not
* supposed to.
*/
# define might_sleep() \
do { __might_sleep(__FILE__, __LINE__, 0); might_resched(); } while (0)
#else
static inline void __might_sleep(const char *file, int line,
int preempt_offset) { }
# define might_sleep() do { might_resched(); } while (0)
#endif
#define might_sleep_if(cond) do { if (cond) might_sleep(); } while (0)
/*
* abs() handles unsigned and signed longs, ints, shorts and chars. For all
* input types abs() returns a signed long.
* abs() should not be used for 64-bit types (s64, u64, long long) - use abs64()
* for those.
*/
#define abs(x) ({ \
long ret; \
if (sizeof(x) == sizeof(long)) { \
long __x = (x); \
ret = (__x < 0) ? -__x : __x; \
} else { \
int __x = (x); \
ret = (__x < 0) ? -__x : __x; \
} \
ret; \
})
#define abs64(x) ({ \
s64 __x = (x); \
(__x < 0) ? -__x : __x; \
})
#ifdef CONFIG_PROVE_LOCKING
void might_fault(void);
#else
static inline void might_fault(void)
{
might_sleep();
}
#endif
extern struct atomic_notifier_head panic_notifier_list;
extern long (*panic_blink)(int state);
__printf(1, 2)
void panic(const char *fmt, ...)
__noreturn __cold;
extern void oops_enter(void);
extern void oops_exit(void);
void print_oops_end_marker(void);
extern int oops_may_print(void);
void do_exit(long error_code)
__noreturn;
void complete_and_exit(struct completion *, long)
__noreturn;
/* Internal, do not use. */
int __must_check _kstrtoul(const char *s, unsigned int base, unsigned long *res);
int __must_check _kstrtol(const char *s, unsigned int base, long *res);
int __must_check kstrtoull(const char *s, unsigned int base, unsigned long long *res);
int __must_check kstrtoll(const char *s, unsigned int base, long long *res);
static inline int __must_check kstrtoul(const char *s, unsigned int base, unsigned long *res)
{
/*
* We want to shortcut function call, but
* __builtin_types_compatible_p(unsigned long, unsigned long long) = 0.
*/
if (sizeof(unsigned long) == sizeof(unsigned long long) &&
__alignof__(unsigned long) == __alignof__(unsigned long long))
return kstrtoull(s, base, (unsigned long long *)res);
else
return _kstrtoul(s, base, res);
}
static inline int __must_check kstrtol(const char *s, unsigned int base, long *res)
{
/*
* We want to shortcut function call, but
* __builtin_types_compatible_p(long, long long) = 0.
*/
if (sizeof(long) == sizeof(long long) &&
__alignof__(long) == __alignof__(long long))
return kstrtoll(s, base, (long long *)res);
else
return _kstrtol(s, base, res);
}
int __must_check kstrtouint(const char *s, unsigned int base, unsigned int *res);
int __must_check kstrtoint(const char *s, unsigned int base, int *res);
static inline int __must_check kstrtou64(const char *s, unsigned int base, u64 *res)
{
return kstrtoull(s, base, res);
}
static inline int __must_check kstrtos64(const char *s, unsigned int base, s64 *res)
{
return kstrtoll(s, base, res);
}
static inline int __must_check kstrtou32(const char *s, unsigned int base, u32 *res)
{
return kstrtouint(s, base, res);
}
static inline int __must_check kstrtos32(const char *s, unsigned int base, s32 *res)
{
return kstrtoint(s, base, res);
}
int __must_check kstrtou16(const char *s, unsigned int base, u16 *res);
int __must_check kstrtos16(const char *s, unsigned int base, s16 *res);
int __must_check kstrtou8(const char *s, unsigned int base, u8 *res);
int __must_check kstrtos8(const char *s, unsigned int base, s8 *res);
int __must_check kstrtoull_from_user(const char __user *s, size_t count, unsigned int base, unsigned long long *res);
int __must_check kstrtoll_from_user(const char __user *s, size_t count, unsigned int base, long long *res);
int __must_check kstrtoul_from_user(const char __user *s, size_t count, unsigned int base, unsigned long *res);
int __must_check kstrtol_from_user(const char __user *s, size_t count, unsigned int base, long *res);
int __must_check kstrtouint_from_user(const char __user *s, size_t count, unsigned int base, unsigned int *res);
int __must_check kstrtoint_from_user(const char __user *s, size_t count, unsigned int base, int *res);
int __must_check kstrtou16_from_user(const char __user *s, size_t count, unsigned int base, u16 *res);
int __must_check kstrtos16_from_user(const char __user *s, size_t count, unsigned int base, s16 *res);
int __must_check kstrtou8_from_user(const char __user *s, size_t count, unsigned int base, u8 *res);
int __must_check kstrtos8_from_user(const char __user *s, size_t count, unsigned int base, s8 *res);
static inline int __must_check kstrtou64_from_user(const char __user *s, size_t count, unsigned int base, u64 *res)
{
return kstrtoull_from_user(s, count, base, res);
}
static inline int __must_check kstrtos64_from_user(const char __user *s, size_t count, unsigned int base, s64 *res)
{
return kstrtoll_from_user(s, count, base, res);
}
static inline int __must_check kstrtou32_from_user(const char __user *s, size_t count, unsigned int base, u32 *res)
{
return kstrtouint_from_user(s, count, base, res);
}
static inline int __must_check kstrtos32_from_user(const char __user *s, size_t count, unsigned int base, s32 *res)
{
return kstrtoint_from_user(s, count, base, res);
}
/* Obsolete, do not use. Use kstrto<foo> instead */
extern unsigned long simple_strtoul(const char *,char **,unsigned int);
extern long simple_strtol(const char *,char **,unsigned int);
extern unsigned long long simple_strtoull(const char *,char **,unsigned int);
extern long long simple_strtoll(const char *,char **,unsigned int);
#define strict_strtoul kstrtoul
#define strict_strtol kstrtol
#define strict_strtoull kstrtoull
#define strict_strtoll kstrtoll
extern int num_to_str(char *buf, int size, unsigned long long num);
/* lib/printf utilities */
extern __printf(2, 3) int sprintf(char *buf, const char * fmt, ...);
extern __printf(2, 0) int vsprintf(char *buf, const char *, va_list);
extern __printf(3, 4)
int snprintf(char *buf, size_t size, const char *fmt, ...);
extern __printf(3, 0)
int vsnprintf(char *buf, size_t size, const char *fmt, va_list args);
extern __printf(3, 4)
int scnprintf(char *buf, size_t size, const char *fmt, ...);
extern __printf(3, 0)
int vscnprintf(char *buf, size_t size, const char *fmt, va_list args);
extern __printf(2, 3)
char *kasprintf(gfp_t gfp, const char *fmt, ...);
extern char *kvasprintf(gfp_t gfp, const char *fmt, va_list args);
extern __scanf(2, 3)
int sscanf(const char *, const char *, ...);
extern __scanf(2, 0)
int vsscanf(const char *, const char *, va_list);
extern int get_option(char **str, int *pint);
extern char *get_options(const char *str, int nints, int *ints);
extern unsigned long long memparse(const char *ptr, char **retptr);
extern int core_kernel_text(unsigned long addr);
extern int core_kernel_data(unsigned long addr);
extern int __kernel_text_address(unsigned long addr);
extern int kernel_text_address(unsigned long addr);
extern int func_ptr_is_kernel_text(void *ptr);
struct pid;
extern struct pid *session_of_pgrp(struct pid *pgrp);
unsigned long int_sqrt(unsigned long);
extern void bust_spinlocks(int yes);
extern void wake_up_klogd(void);
extern int oops_in_progress; /* If set, an oops, panic(), BUG() or die() is in progress */
extern int panic_timeout;
extern int panic_on_oops;
extern int panic_on_unrecovered_nmi;
extern int panic_on_io_nmi;
extern int sysctl_panic_on_stackoverflow;
extern const char *print_tainted(void);
extern void add_taint(unsigned flag);
extern int test_taint(unsigned flag);
extern unsigned long get_taint(void);
extern int root_mountflags;
extern bool early_boot_irqs_disabled;
/* Values used for system_state */
extern enum system_states {
SYSTEM_BOOTING,
SYSTEM_RUNNING,
SYSTEM_HALT,
SYSTEM_POWER_OFF,
SYSTEM_RESTART,
SYSTEM_SUSPEND_DISK,
} system_state;
#define TAINT_PROPRIETARY_MODULE 0
#define TAINT_FORCED_MODULE 1
#define TAINT_UNSAFE_SMP 2
#define TAINT_FORCED_RMMOD 3
#define TAINT_MACHINE_CHECK 4
#define TAINT_BAD_PAGE 5
#define TAINT_USER 6
#define TAINT_DIE 7
#define TAINT_OVERRIDDEN_ACPI_TABLE 8
#define TAINT_WARN 9
#define TAINT_CRAP 10
#define TAINT_FIRMWARE_WORKAROUND 11
#define TAINT_OOT_MODULE 12
extern const char hex_asc[];
#define hex_asc_lo(x) hex_asc[((x) & 0x0f)]
#define hex_asc_hi(x) hex_asc[((x) & 0xf0) >> 4]
static inline char *hex_byte_pack(char *buf, u8 byte)
{
*buf++ = hex_asc_hi(byte);
*buf++ = hex_asc_lo(byte);
return buf;
}
static inline char * __deprecated pack_hex_byte(char *buf, u8 byte)
{
return hex_byte_pack(buf, byte);
}
extern int hex_to_bin(char ch);
extern int __must_check hex2bin(u8 *dst, const char *src, size_t count);
/*
* General tracing related utility functions - trace_printk(),
* tracing_on/tracing_off and tracing_start()/tracing_stop
*
* Use tracing_on/tracing_off when you want to quickly turn on or off
* tracing. It simply enables or disables the recording of the trace events.
* This also corresponds to the user space /sys/kernel/debug/tracing/tracing_on
* file, which gives a means for the kernel and userspace to interact.
* Place a tracing_off() in the kernel where you want tracing to end.
* From user space, examine the trace, and then echo 1 > tracing_on
* to continue tracing.
*
* tracing_stop/tracing_start has slightly more overhead. It is used
* by things like suspend to ram where disabling the recording of the
* trace is not enough, but tracing must actually stop because things
* like calling smp_processor_id() may crash the system.
*
* Most likely, you want to use tracing_on/tracing_off.
*/
#ifdef CONFIG_RING_BUFFER
void tracing_on(void);
void tracing_off(void);
/* trace_off_permanent stops recording with no way to bring it back */
void tracing_off_permanent(void);
int tracing_is_on(void);
#else
static inline void tracing_on(void) { }
static inline void tracing_off(void) { }
static inline void tracing_off_permanent(void) { }
static inline int tracing_is_on(void) { return 0; }
#endif
enum ftrace_dump_mode {
DUMP_NONE,
DUMP_ALL,
DUMP_ORIG,
};
#ifdef CONFIG_TRACING
extern void tracing_start(void);
extern void tracing_stop(void);
extern void ftrace_off_permanent(void);
static inline __printf(1, 2)
void ____trace_printk_check_format(const char *fmt, ...)
{
}
#define __trace_printk_check_format(fmt, args...) \
do { \
if (0) \
____trace_printk_check_format(fmt, ##args); \
} while (0)
/**
* trace_printk - printf formatting in the ftrace buffer
* @fmt: the printf format for printing
*
* Note: __trace_printk is an internal function for trace_printk and
* the @ip is passed in via the trace_printk macro.
*
* This function allows a kernel developer to debug fast path sections
* that printk is not appropriate for. By scattering in various
* printk like tracing in the code, a developer can quickly see
* where problems are occurring.
*
* This is intended as a debugging tool for the developer only.
* Please refrain from leaving trace_printks scattered around in
* your code.
*/
#define trace_printk(fmt, args...) \
do { \
__trace_printk_check_format(fmt, ##args); \
if (__builtin_constant_p(fmt)) { \
static const char *trace_printk_fmt \
__attribute__((section("__trace_printk_fmt"))) = \
__builtin_constant_p(fmt) ? fmt : NULL; \
\
__trace_bprintk(_THIS_IP_, trace_printk_fmt, ##args); \
} else \
__trace_printk(_THIS_IP_, fmt, ##args); \
} while (0)
extern __printf(2, 3)
int __trace_bprintk(unsigned long ip, const char *fmt, ...);
extern __printf(2, 3)
int __trace_printk(unsigned long ip, const char *fmt, ...);
extern void trace_dump_stack(void);
/*
* The double __builtin_constant_p is because gcc will give us an error
* if we try to allocate the static variable to fmt if it is not a
* constant. Even with the outer if statement.
*/
#define ftrace_vprintk(fmt, vargs) \
do { \
if (__builtin_constant_p(fmt)) { \
static const char *trace_printk_fmt \
__attribute__((section("__trace_printk_fmt"))) = \
__builtin_constant_p(fmt) ? fmt : NULL; \
\
__ftrace_vbprintk(_THIS_IP_, trace_printk_fmt, vargs); \
} else \
__ftrace_vprintk(_THIS_IP_, fmt, vargs); \
} while (0)
extern int
__ftrace_vbprintk(unsigned long ip, const char *fmt, va_list ap);
extern int
__ftrace_vprintk(unsigned long ip, const char *fmt, va_list ap);
extern void ftrace_dump(enum ftrace_dump_mode oops_dump_mode);
#else
static inline __printf(1, 2)
int trace_printk(const char *fmt, ...);
static inline void tracing_start(void) { }
static inline void tracing_stop(void) { }
static inline void ftrace_off_permanent(void) { }
static inline void trace_dump_stack(void) { }
static inline int
trace_printk(const char *fmt, ...)
{
return 0;
}
static inline int
ftrace_vprintk(const char *fmt, va_list ap)
{
return 0;
}
static inline void ftrace_dump(enum ftrace_dump_mode oops_dump_mode) { }
#endif /* CONFIG_TRACING */
/*
* min()/max()/clamp() macros that also do
* strict type-checking.. See the
* "unnecessary" pointer comparison.
*/
#define min(x, y) ({ \
typeof(x) _min1 = (x); \
typeof(y) _min2 = (y); \
(void) (&_min1 == &_min2); \
_min1 < _min2 ? _min1 : _min2; })
#define max(x, y) ({ \
typeof(x) _max1 = (x); \
typeof(y) _max2 = (y); \
(void) (&_max1 == &_max2); \
_max1 > _max2 ? _max1 : _max2; })
#define min3(x, y, z) ({ \
typeof(x) _min1 = (x); \
typeof(y) _min2 = (y); \
typeof(z) _min3 = (z); \
(void) (&_min1 == &_min2); \
(void) (&_min1 == &_min3); \
_min1 < _min2 ? (_min1 < _min3 ? _min1 : _min3) : \
(_min2 < _min3 ? _min2 : _min3); })
#define max3(x, y, z) ({ \
typeof(x) _max1 = (x); \
typeof(y) _max2 = (y); \
typeof(z) _max3 = (z); \
(void) (&_max1 == &_max2); \
(void) (&_max1 == &_max3); \
_max1 > _max2 ? (_max1 > _max3 ? _max1 : _max3) : \
(_max2 > _max3 ? _max2 : _max3); })
/**
* min_not_zero - return the minimum that is _not_ zero, unless both are zero
* @x: value1
* @y: value2
*/
#define min_not_zero(x, y) ({ \
typeof(x) __x = (x); \
typeof(y) __y = (y); \
__x == 0 ? __y : ((__y == 0) ? __x : min(__x, __y)); })
/**
* clamp - return a value clamped to a given range with strict typechecking
* @val: current value
* @min: minimum allowable value
* @max: maximum allowable value
*
* This macro does strict typechecking of min/max to make sure they are of the
* same type as val. See the unnecessary pointer comparisons.
*/
#define clamp(val, min, max) ({ \
typeof(val) __val = (val); \
typeof(min) __min = (min); \
typeof(max) __max = (max); \
(void) (&__val == &__min); \
(void) (&__val == &__max); \
__val = __val < __min ? __min: __val; \
__val > __max ? __max: __val; })
/*
* ..and if you can't take the strict
* types, you can specify one yourself.
*
* Or not use min/max/clamp at all, of course.
*/
#define min_t(type, x, y) ({ \
type __min1 = (x); \
type __min2 = (y); \
__min1 < __min2 ? __min1: __min2; })
#define max_t(type, x, y) ({ \
type __max1 = (x); \
type __max2 = (y); \
__max1 > __max2 ? __max1: __max2; })
/**
* clamp_t - return a value clamped to a given range using a given type
* @type: the type of variable to use
* @val: current value
* @min: minimum allowable value
* @max: maximum allowable value
*
* This macro does no typechecking and uses temporary variables of type
* 'type' to make all the comparisons.
*/
#define clamp_t(type, val, min, max) ({ \
type __val = (val); \
type __min = (min); \
type __max = (max); \
__val = __val < __min ? __min: __val; \
__val > __max ? __max: __val; })
/**
* clamp_val - return a value clamped to a given range using val's type
* @val: current value
* @min: minimum allowable value
* @max: maximum allowable value
*
* This macro does no typechecking and uses temporary variables of whatever
* type the input argument 'val' is. This is useful when val is an unsigned
* type and min and max are literals that will otherwise be assigned a signed
* integer type.
*/
#define clamp_val(val, min, max) ({ \
typeof(val) __val = (val); \
typeof(val) __min = (min); \
typeof(val) __max = (max); \
__val = __val < __min ? __min: __val; \
__val > __max ? __max: __val; })
/*
* swap - swap value of @a and @b
*/
#define swap(a, b) \
do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0)
/**
* container_of - cast a member of a structure out to the containing structure
* @ptr: the pointer to the member.
* @type: the type of the container struct this is embedded in.
* @member: the name of the member within the struct.
*
*/
#define container_of(ptr, type, member) ({ \
const typeof( ((type *)0)->member ) *__mptr = (ptr); \
(type *)( (char *)__mptr - offsetof(type,member) );})
#ifdef __CHECKER__
#define BUILD_BUG_ON_NOT_POWER_OF_2(n)
#define BUILD_BUG_ON_ZERO(e) (0)
#define BUILD_BUG_ON_NULL(e) ((void*)0)
#define BUILD_BUG_ON(condition)
#define BUILD_BUG() (0)
#else /* __CHECKER__ */
/* Force a compilation error if a constant expression is not a power of 2 */
#define BUILD_BUG_ON_NOT_POWER_OF_2(n) \
BUILD_BUG_ON((n) == 0 || (((n) & ((n) - 1)) != 0))
/* Force a compilation error if condition is true, but also produce a
result (of value 0 and type size_t), so the expression can be used
e.g. in a structure initializer (or where-ever else comma expressions
aren't permitted). */
#define BUILD_BUG_ON_ZERO(e) (sizeof(struct { int:-!!(e); }))
#define BUILD_BUG_ON_NULL(e) ((void *)sizeof(struct { int:-!!(e); }))
/**
* BUILD_BUG_ON - break compile if a condition is true.
* @condition: the condition which the compiler should know is false.
*
* If you have some code which relies on certain constants being equal, or
* other compile-time-evaluated condition, you should use BUILD_BUG_ON to
* detect if someone changes it.
*
* The implementation uses gcc's reluctance to create a negative array, but
* gcc (as of 4.4) only emits that error for obvious cases (eg. not arguments
* to inline functions). So as a fallback we use the optimizer; if it can't
* prove the condition is false, it will cause a link error on the undefined
* "__build_bug_on_failed". This error message can be harder to track down
* though, hence the two different methods.
*/
#ifndef __OPTIMIZE__
#define BUILD_BUG_ON(condition) ((void)sizeof(char[1 - 2*!!(condition)]))
#else
extern int __build_bug_on_failed;
#define BUILD_BUG_ON(condition) \
do { \
((void)sizeof(char[1 - 2*!!(condition)])); \
if (condition) __build_bug_on_failed = 1; \
} while(0)
#endif
/**
* BUILD_BUG - break compile if used.
*
* If you have some code that you expect the compiler to eliminate at
* build time, you should use BUILD_BUG to detect if it is
* unexpectedly used.
*/
#define BUILD_BUG() \
do { \
extern void __build_bug_failed(void) \
__linktime_error("BUILD_BUG failed"); \
__build_bug_failed(); \
} while (0)
#endif /* __CHECKER__ */
/* Trap pasters of __FUNCTION__ at compile-time */
#define __FUNCTION__ (__func__)
/* This helps us to avoid #ifdef CONFIG_NUMA */
#ifdef CONFIG_NUMA
#define NUMA_BUILD 1
#else
#define NUMA_BUILD 0
#endif
/* This helps us avoid #ifdef CONFIG_COMPACTION */
#ifdef CONFIG_COMPACTION
#define COMPACTION_BUILD 1
#else
#define COMPACTION_BUILD 0
#endif
/* Rebuild everything on CONFIG_FTRACE_MCOUNT_RECORD */
#ifdef CONFIG_FTRACE_MCOUNT_RECORD
# define REBUILD_DUE_TO_FTRACE_MCOUNT_RECORD
#endif
struct sysinfo;
extern int do_sysinfo(struct sysinfo *info);
#endif /* __KERNEL__ */
#define SI_LOAD_SHIFT 16
struct sysinfo {
long uptime; /* Seconds since boot */
unsigned long loads[3]; /* 1, 5, and 15 minute load averages */
unsigned long totalram; /* Total usable main memory size */
unsigned long freeram; /* Available memory size */
unsigned long sharedram; /* Amount of shared memory */
unsigned long bufferram; /* Memory used by buffers */
unsigned long totalswap; /* Total swap space size */
unsigned long freeswap; /* swap space still available */
unsigned short procs; /* Number of current processes */
unsigned short pad; /* explicit padding for m68k */
unsigned long totalhigh; /* Total high memory size */
unsigned long freehigh; /* Available high memory size */
unsigned int mem_unit; /* Memory unit size in bytes */
char _f[20-2*sizeof(long)-sizeof(int)]; /* Padding: libc5 uses this.. */
};
#endif