Browse Source
This implements the API defined in <linux/decompress/generic.h> which is used for kernel, initramfs, and initrd decompression. This patch together with the first patch is enough for XZ-compressed initramfs and initrd; XZ-compressed kernel will need arch-specific changes. The buffering requirements described in decompress_unxz.c are stricter than with gzip, so the relevant changes should be done to the arch-specific code when adding support for XZ-compressed kernel. Similarly, the heap size in arch-specific pre-boot code may need to be increased (30 KiB is enough). The XZ decompressor needs memmove(), memeq() (memcmp() == 0), and memzero() (memset(ptr, 0, size)), which aren't available in all arch-specific pre-boot environments. I'm including simple versions in decompress_unxz.c, but a cleaner solution would naturally be nicer. Signed-off-by: Lasse Collin <lasse.collin@tukaani.org> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Alain Knaff <alain@knaff.lu> Cc: Albin Tonnerre <albin.tonnerre@free-electrons.com> Cc: Phillip Lougher <phillip@lougher.demon.co.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>master


9 changed files with 469 additions and 2 deletions
@ -0,0 +1,19 @@
|
||||
/*
|
||||
* Wrapper for decompressing XZ-compressed kernel, initramfs, and initrd |
||||
* |
||||
* Author: Lasse Collin <lasse.collin@tukaani.org> |
||||
* |
||||
* This file has been put into the public domain. |
||||
* You can do whatever you want with this file. |
||||
*/ |
||||
|
||||
#ifndef DECOMPRESS_UNXZ_H |
||||
#define DECOMPRESS_UNXZ_H |
||||
|
||||
int unxz(unsigned char *in, int in_size, |
||||
int (*fill)(void *dest, unsigned int size), |
||||
int (*flush)(void *src, unsigned int size), |
||||
unsigned char *out, int *in_used, |
||||
void (*error)(char *x)); |
||||
|
||||
#endif |
@ -0,0 +1,397 @@
|
||||
/*
|
||||
* Wrapper for decompressing XZ-compressed kernel, initramfs, and initrd |
||||
* |
||||
* Author: Lasse Collin <lasse.collin@tukaani.org> |
||||
* |
||||
* This file has been put into the public domain. |
||||
* You can do whatever you want with this file. |
||||
*/ |
||||
|
||||
/*
|
||||
* Important notes about in-place decompression |
||||
* |
||||
* At least on x86, the kernel is decompressed in place: the compressed data |
||||
* is placed to the end of the output buffer, and the decompressor overwrites |
||||
* most of the compressed data. There must be enough safety margin to |
||||
* guarantee that the write position is always behind the read position. |
||||
* |
||||
* The safety margin for XZ with LZMA2 or BCJ+LZMA2 is calculated below. |
||||
* Note that the margin with XZ is bigger than with Deflate (gzip)! |
||||
* |
||||
* The worst case for in-place decompression is that the beginning of |
||||
* the file is compressed extremely well, and the rest of the file is |
||||
* uncompressible. Thus, we must look for worst-case expansion when the |
||||
* compressor is encoding uncompressible data. |
||||
* |
||||
* The structure of the .xz file in case of a compresed kernel is as follows. |
||||
* Sizes (as bytes) of the fields are in parenthesis. |
||||
* |
||||
* Stream Header (12) |
||||
* Block Header: |
||||
* Block Header (8-12) |
||||
* Compressed Data (N) |
||||
* Block Padding (0-3) |
||||
* CRC32 (4) |
||||
* Index (8-20) |
||||
* Stream Footer (12) |
||||
* |
||||
* Normally there is exactly one Block, but let's assume that there are |
||||
* 2-4 Blocks just in case. Because Stream Header and also Block Header |
||||
* of the first Block don't make the decompressor produce any uncompressed |
||||
* data, we can ignore them from our calculations. Block Headers of possible |
||||
* additional Blocks have to be taken into account still. With these |
||||
* assumptions, it is safe to assume that the total header overhead is |
||||
* less than 128 bytes. |
||||
* |
||||
* Compressed Data contains LZMA2 or BCJ+LZMA2 encoded data. Since BCJ |
||||
* doesn't change the size of the data, it is enough to calculate the |
||||
* safety margin for LZMA2. |
||||
* |
||||
* LZMA2 stores the data in chunks. Each chunk has a header whose size is |
||||
* a maximum of 6 bytes, but to get round 2^n numbers, let's assume that |
||||
* the maximum chunk header size is 8 bytes. After the chunk header, there |
||||
* may be up to 64 KiB of actual payload in the chunk. Often the payload is |
||||
* quite a bit smaller though; to be safe, let's assume that an average |
||||
* chunk has only 32 KiB of payload. |
||||
* |
||||
* The maximum uncompressed size of the payload is 2 MiB. The minimum |
||||
* uncompressed size of the payload is in practice never less than the |
||||
* payload size itself. The LZMA2 format would allow uncompressed size |
||||
* to be less than the payload size, but no sane compressor creates such |
||||
* files. LZMA2 supports storing uncompressible data in uncompressed form, |
||||
* so there's never a need to create payloads whose uncompressed size is |
||||
* smaller than the compressed size. |
||||
* |
||||
* The assumption, that the uncompressed size of the payload is never |
||||
* smaller than the payload itself, is valid only when talking about |
||||
* the payload as a whole. It is possible that the payload has parts where |
||||
* the decompressor consumes more input than it produces output. Calculating |
||||
* the worst case for this would be tricky. Instead of trying to do that, |
||||
* let's simply make sure that the decompressor never overwrites any bytes |
||||
* of the payload which it is currently reading. |
||||
* |
||||
* Now we have enough information to calculate the safety margin. We need |
||||
* - 128 bytes for the .xz file format headers; |
||||
* - 8 bytes per every 32 KiB of uncompressed size (one LZMA2 chunk header |
||||
* per chunk, each chunk having average payload size of 32 KiB); and |
||||
* - 64 KiB (biggest possible LZMA2 chunk payload size) to make sure that |
||||
* the decompressor never overwrites anything from the LZMA2 chunk |
||||
* payload it is currently reading. |
||||
* |
||||
* We get the following formula: |
||||
* |
||||
* safety_margin = 128 + uncompressed_size * 8 / 32768 + 65536 |
||||
* = 128 + (uncompressed_size >> 12) + 65536 |
||||
* |
||||
* For comparision, according to arch/x86/boot/compressed/misc.c, the |
||||
* equivalent formula for Deflate is this: |
||||
* |
||||
* safety_margin = 18 + (uncompressed_size >> 12) + 32768 |
||||
* |
||||
* Thus, when updating Deflate-only in-place kernel decompressor to |
||||
* support XZ, the fixed overhead has to be increased from 18+32768 bytes |
||||
* to 128+65536 bytes. |
||||
*/ |
||||
|
||||
/*
|
||||
* STATIC is defined to "static" if we are being built for kernel |
||||
* decompression (pre-boot code). <linux/decompress/mm.h> will define |
||||
* STATIC to empty if it wasn't already defined. Since we will need to |
||||
* know later if we are being used for kernel decompression, we define |
||||
* XZ_PREBOOT here. |
||||
*/ |
||||
#ifdef STATIC |
||||
# define XZ_PREBOOT |
||||
#endif |
||||
#ifdef __KERNEL__ |
||||
# include <linux/decompress/mm.h> |
||||
#endif |
||||
#define XZ_EXTERN STATIC |
||||
|
||||
#ifndef XZ_PREBOOT |
||||
# include <linux/slab.h> |
||||
# include <linux/xz.h> |
||||
#else |
||||
/*
|
||||
* Use the internal CRC32 code instead of kernel's CRC32 module, which |
||||
* is not available in early phase of booting. |
||||
*/ |
||||
#define XZ_INTERNAL_CRC32 1 |
||||
|
||||
/*
|
||||
* For boot time use, we enable only the BCJ filter of the current |
||||
* architecture or none if no BCJ filter is available for the architecture. |
||||
*/ |
||||
#ifdef CONFIG_X86 |
||||
# define XZ_DEC_X86 |
||||
#endif |
||||
#ifdef CONFIG_PPC |
||||
# define XZ_DEC_POWERPC |
||||
#endif |
||||
#ifdef CONFIG_ARM |
||||
# define XZ_DEC_ARM |
||||
#endif |
||||
#ifdef CONFIG_IA64 |
||||
# define XZ_DEC_IA64 |
||||
#endif |
||||
#ifdef CONFIG_SPARC |
||||
# define XZ_DEC_SPARC |
||||
#endif |
||||
|
||||
/*
|
||||
* This will get the basic headers so that memeq() and others |
||||
* can be defined. |
||||
*/ |
||||
#include "xz/xz_private.h" |
||||
|
||||
/*
|
||||
* Replace the normal allocation functions with the versions from |
||||
* <linux/decompress/mm.h>. vfree() needs to support vfree(NULL) |
||||
* when XZ_DYNALLOC is used, but the pre-boot free() doesn't support it. |
||||
* Workaround it here because the other decompressors don't need it. |
||||
*/ |
||||
#undef kmalloc |
||||
#undef kfree |
||||
#undef vmalloc |
||||
#undef vfree |
||||
#define kmalloc(size, flags) malloc(size) |
||||
#define kfree(ptr) free(ptr) |
||||
#define vmalloc(size) malloc(size) |
||||
#define vfree(ptr) do { if (ptr != NULL) free(ptr); } while (0) |
||||
|
||||
/*
|
||||
* FIXME: Not all basic memory functions are provided in architecture-specific |
||||
* files (yet). We define our own versions here for now, but this should be |
||||
* only a temporary solution. |
||||
* |
||||
* memeq and memzero are not used much and any remotely sane implementation |
||||
* is fast enough. memcpy/memmove speed matters in multi-call mode, but |
||||
* the kernel image is decompressed in single-call mode, in which only |
||||
* memcpy speed can matter and only if there is a lot of uncompressible data |
||||
* (LZMA2 stores uncompressible chunks in uncompressed form). Thus, the |
||||
* functions below should just be kept small; it's probably not worth |
||||
* optimizing for speed. |
||||
*/ |
||||
|
||||
#ifndef memeq |
||||
static bool memeq(const void *a, const void *b, size_t size) |
||||
{ |
||||
const uint8_t *x = a; |
||||
const uint8_t *y = b; |
||||
size_t i; |
||||
|
||||
for (i = 0; i < size; ++i) |
||||
if (x[i] != y[i]) |
||||
return false; |
||||
|
||||
return true; |
||||
} |
||||
#endif |
||||
|
||||
#ifndef memzero |
||||
static void memzero(void *buf, size_t size) |
||||
{ |
||||
uint8_t *b = buf; |
||||
uint8_t *e = b + size; |
||||
|
||||
while (b != e) |
||||
*b++ = '\0'; |
||||
} |
||||
#endif |
||||
|
||||
#ifndef memmove |
||||
/* Not static to avoid a conflict with the prototype in the Linux headers. */ |
||||
void *memmove(void *dest, const void *src, size_t size) |
||||
{ |
||||
uint8_t *d = dest; |
||||
const uint8_t *s = src; |
||||
size_t i; |
||||
|
||||
if (d < s) { |
||||
for (i = 0; i < size; ++i) |
||||
d[i] = s[i]; |
||||
} else if (d > s) { |
||||
i = size; |
||||
while (i-- > 0) |
||||
d[i] = s[i]; |
||||
} |
||||
|
||||
return dest; |
||||
} |
||||
#endif |
||||
|
||||
/*
|
||||
* Since we need memmove anyway, would use it as memcpy too. |
||||
* Commented out for now to avoid breaking things. |
||||
*/ |
||||
/*
|
||||
#ifndef memcpy |
||||
# define memcpy memmove |
||||
#endif |
||||
*/ |
||||
|
||||
#include "xz/xz_crc32.c" |
||||
#include "xz/xz_dec_stream.c" |
||||
#include "xz/xz_dec_lzma2.c" |
||||
#include "xz/xz_dec_bcj.c" |
||||
|
||||
#endif /* XZ_PREBOOT */ |
||||
|
||||
/* Size of the input and output buffers in multi-call mode */ |
||||
#define XZ_IOBUF_SIZE 4096 |
||||
|
||||
/*
|
||||
* This function implements the API defined in <linux/decompress/generic.h>. |
||||
* |
||||
* This wrapper will automatically choose single-call or multi-call mode |
||||
* of the native XZ decoder API. The single-call mode can be used only when |
||||
* both input and output buffers are available as a single chunk, i.e. when |
||||
* fill() and flush() won't be used. |
||||
*/ |
||||
STATIC int INIT unxz(unsigned char *in, int in_size, |
||||
int (*fill)(void *dest, unsigned int size), |
||||
int (*flush)(void *src, unsigned int size), |
||||
unsigned char *out, int *in_used, |
||||
void (*error)(char *x)) |
||||
{ |
||||
struct xz_buf b; |
||||
struct xz_dec *s; |
||||
enum xz_ret ret; |
||||
bool must_free_in = false; |
||||
|
||||
#if XZ_INTERNAL_CRC32 |
||||
xz_crc32_init(); |
||||
#endif |
||||
|
||||
if (in_used != NULL) |
||||
*in_used = 0; |
||||
|
||||
if (fill == NULL && flush == NULL) |
||||
s = xz_dec_init(XZ_SINGLE, 0); |
||||
else |
||||
s = xz_dec_init(XZ_DYNALLOC, (uint32_t)-1); |
||||
|
||||
if (s == NULL) |
||||
goto error_alloc_state; |
||||
|
||||
if (flush == NULL) { |
||||
b.out = out; |
||||
b.out_size = (size_t)-1; |
||||
} else { |
||||
b.out_size = XZ_IOBUF_SIZE; |
||||
b.out = malloc(XZ_IOBUF_SIZE); |
||||
if (b.out == NULL) |
||||
goto error_alloc_out; |
||||
} |
||||
|
||||
if (in == NULL) { |
||||
must_free_in = true; |
||||
in = malloc(XZ_IOBUF_SIZE); |
||||
if (in == NULL) |
||||
goto error_alloc_in; |
||||
} |
||||
|
||||
b.in = in; |
||||
b.in_pos = 0; |
||||
b.in_size = in_size; |
||||
b.out_pos = 0; |
||||
|
||||
if (fill == NULL && flush == NULL) { |
||||
ret = xz_dec_run(s, &b); |
||||
} else { |
||||
do { |
||||
if (b.in_pos == b.in_size && fill != NULL) { |
||||
if (in_used != NULL) |
||||
*in_used += b.in_pos; |
||||
|
||||
b.in_pos = 0; |
||||
|
||||
in_size = fill(in, XZ_IOBUF_SIZE); |
||||
if (in_size < 0) { |
||||
/*
|
||||
* This isn't an optimal error code |
||||
* but it probably isn't worth making |
||||
* a new one either. |
||||
*/ |
||||
ret = XZ_BUF_ERROR; |
||||
break; |
||||
} |
||||
|
||||
b.in_size = in_size; |
||||
} |
||||
|
||||
ret = xz_dec_run(s, &b); |
||||
|
||||
if (flush != NULL && (b.out_pos == b.out_size |
||||
|| (ret != XZ_OK && b.out_pos > 0))) { |
||||
/*
|
||||
* Setting ret here may hide an error |
||||
* returned by xz_dec_run(), but probably |
||||
* it's not too bad. |
||||
*/ |
||||
if (flush(b.out, b.out_pos) != (int)b.out_pos) |
||||
ret = XZ_BUF_ERROR; |
||||
|
||||
b.out_pos = 0; |
||||
} |
||||
} while (ret == XZ_OK); |
||||
|
||||
if (must_free_in) |
||||
free(in); |
||||
|
||||
if (flush != NULL) |
||||
free(b.out); |
||||
} |
||||
|
||||
if (in_used != NULL) |
||||
*in_used += b.in_pos; |
||||
|
||||
xz_dec_end(s); |
||||
|
||||
switch (ret) { |
||||
case XZ_STREAM_END: |
||||
return 0; |
||||
|
||||
case XZ_MEM_ERROR: |
||||
/* This can occur only in multi-call mode. */ |
||||
error("XZ decompressor ran out of memory"); |
||||
break; |
||||
|
||||
case XZ_FORMAT_ERROR: |
||||
error("Input is not in the XZ format (wrong magic bytes)"); |
||||
break; |
||||
|
||||
case XZ_OPTIONS_ERROR: |
||||
error("Input was encoded with settings that are not " |
||||
"supported by this XZ decoder"); |
||||
break; |
||||
|
||||
case XZ_DATA_ERROR: |
||||
case XZ_BUF_ERROR: |
||||
error("XZ-compressed data is corrupt"); |
||||
break; |
||||
|
||||
default: |
||||
error("Bug in the XZ decompressor"); |
||||
break; |
||||
} |
||||
|
||||
return -1; |
||||
|
||||
error_alloc_in: |
||||
if (flush != NULL) |
||||
free(b.out); |
||||
|
||||
error_alloc_out: |
||||
xz_dec_end(s); |
||||
|
||||
error_alloc_state: |
||||
error("XZ decompressor ran out of memory"); |
||||
return -1; |
||||
} |
||||
|
||||
/*
|
||||
* This macro is used by architecture-specific files to decompress |
||||
* the kernel image. |
||||
*/ |
||||
#define decompress unxz |
Loading…
Reference in new issue