original development tree for Linux kernel GTP module; now long in mainline.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

4641 lines
120 KiB

include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
12 years ago
block: make ioc get/put interface more conventional and fix race on alloction Ignoring copy_io() during fork, io_context can be allocated from two places - current_io_context() and set_task_ioprio(). The former is always called from local task while the latter can be called from different task. The synchornization between them are peculiar and dubious. * current_io_context() doesn't grab task_lock() and assumes that if it saw %NULL ->io_context, it would stay that way until allocation and assignment is complete. It has smp_wmb() between alloc/init and assignment. * set_task_ioprio() grabs task_lock() for assignment and does smp_read_barrier_depends() between "ioc = task->io_context" and "if (ioc)". Unfortunately, this doesn't achieve anything - the latter is not a dependent load of the former. ie, if ioc itself were being dereferenced "ioc->xxx", it would mean something (not sure what tho) but as the code currently stands, the dependent read barrier is noop. As only one of the the two test-assignment sequences is task_lock() protected, the task_lock() can't do much about race between the two. Nothing prevents current_io_context() and set_task_ioprio() allocating its own ioc for the same task and overwriting the other's. Also, set_task_ioprio() can race with exiting task and create a new ioc after exit_io_context() is finished. ioc get/put doesn't have any reason to be complex. The only hot path is accessing the existing ioc of %current, which is simple to achieve given that ->io_context is never destroyed as long as the task is alive. All other paths can happily go through task_lock() like all other task sub structures without impacting anything. This patch updates ioc get/put so that it becomes more conventional. * alloc_io_context() is replaced with get_task_io_context(). This is the only interface which can acquire access to ioc of another task. On return, the caller has an explicit reference to the object which should be put using put_io_context() afterwards. * The functionality of current_io_context() remains the same but when creating a new ioc, it shares the code path with get_task_io_context() and always goes through task_lock(). * get_io_context() now means incrementing ref on an ioc which the caller already has access to (be that an explicit refcnt or implicit %current one). * PF_EXITING inhibits creation of new io_context and once exit_io_context() is finished, it's guaranteed that both ioc acquisition functions return %NULL. * All users are updated. Most are trivial but smp_read_barrier_depends() removal from cfq_get_io_context() needs a bit of explanation. I suppose the original intention was to ensure ioc->ioprio is visible when set_task_ioprio() allocates new io_context and installs it; however, this wouldn't have worked because set_task_ioprio() doesn't have wmb between init and install. There are other problems with this which will be fixed in another patch. * While at it, use NUMA_NO_NODE instead of -1 for wildcard node specification. -v2: Vivek spotted contamination from debug patch. Removed. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
10 years ago
cfq-iosched: implement hierarchy-ready cfq_group charge scaling Currently, cfqg charges are scaled directly according to cfqg->weight. Regardless of the number of active cfqgs or the amount of active weights, a given weight value always scales charge the same way. This works fine as long as all cfqgs are treated equally regardless of their positions in the hierarchy, which is what cfq currently implements. It can't work in hierarchical settings because the interpretation of a given weight value depends on where the weight is located in the hierarchy. This patch reimplements cfqg charge scaling so that it can be used to support hierarchy properly. The scheme is fairly simple and light-weight. * When a cfqg is added to the service tree, v(disktime)weight is calculated. It walks up the tree to root calculating the fraction it has in the hierarchy. At each level, the fraction can be calculated as cfqg->weight / parent->level_weight By compounding these, the global fraction of vdisktime the cfqg has claim to - vfraction - can be determined. * When the cfqg needs to be charged, the charge is scaled inversely proportionally to the vfraction. The new scaling scheme uses the same CFQ_SERVICE_SHIFT for fixed point representation as before; however, the smallest scaling factor is now 1 (ie. 1 << CFQ_SERVICE_SHIFT). This is different from before where 1 was for CFQ_WEIGHT_DEFAULT and higher weight would result in smaller scaling factor. While this shifts the global scale of vdisktime a bit, it doesn't change the relative relationships among cfqgs and the scheduling result isn't different. cfq_group_notify_queue_add uses fixed CFQ_IDLE_DELAY when appending new cfqg to the service tree. The specific value of CFQ_IDLE_DELAY didn't have any relevance to vdisktime before and is unlikely to cause any visible behavior difference now especially as the scale shift isn't that large. As the new scheme now makes proper distinction between cfqg->weight and ->leaf_weight, reverse the weight aliasing for root cfqgs. For root, both weights are now mapped to ->leaf_weight instead of the other way around. Because we're still using cfqg_flat_parent(), this patch shouldn't change the scheduling behavior in any noticeable way. v2: Beefed up comments on vfraction as requested by Vivek. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Vivek Goyal <vgoyal@redhat.com>
9 years ago
block: blkcg_policy_cfq shouldn't be used if !CONFIG_CFQ_GROUP_IOSCHED cfq may be built w/ or w/o blkcg support depending on CONFIG_CFQ_CGROUP_IOSCHED. If blkcg support is disabled, most of related code is ifdef'd out but some part is left dangling - blkcg_policy_cfq is left zero-filled and blkcg_policy_[un]register() calls are made on it. Feeding zero filled policy to blkcg_policy_register() is incorrect and triggers the following WARN_ON() if CONFIG_BLK_CGROUP && !CONFIG_CFQ_GROUP_IOSCHED. ------------[ cut here ]------------ WARNING: at block/blk-cgroup.c:867 Modules linked in: Modules linked in: CPU: 3 Not tainted 3.4.0-09547-gfb21aff #1 Process swapper/0 (pid: 1, task: 000000003ff80000, ksp: 000000003ff7f8b8) Krnl PSW : 0704100180000000 00000000003d76ca (blkcg_policy_register+0xca/0xe0) R:0 T:1 IO:1 EX:1 Key:0 M:1 W:0 P:0 AS:0 CC:1 PM:0 EA:3 Krnl GPRS: 0000000000000000 00000000014b85ec 00000000014b85b0 0000000000000000 000000000096fb60 0000000000000000 00000000009a8e78 0000000000000048 000000000099c070 0000000000b6f000 0000000000000000 000000000099c0b8 00000000014b85b0 0000000000667580 000000003ff7fd98 000000003ff7fd70 Krnl Code: 00000000003d76be: a7280001 lhi %r2,1 00000000003d76c2: a7f4ffdf brc 15,3d7680 #00000000003d76c6: a7f40001 brc 15,3d76c8 >00000000003d76ca: a7c8ffea lhi %r12,-22 00000000003d76ce: a7f4ffce brc 15,3d766a 00000000003d76d2: a7f40001 brc 15,3d76d4 00000000003d76d6: a7c80000 lhi %r12,0 00000000003d76da: a7f4ffc2 brc 15,3d765e Call Trace: ([<0000000000b6f000>] initcall_debug+0x0/0x4) [<0000000000989e8a>] cfq_init+0x62/0xd4 [<00000000001000ba>] do_one_initcall+0x3a/0x170 [<000000000096fb60>] kernel_init+0x214/0x2bc [<0000000000623202>] kernel_thread_starter+0x6/0xc [<00000000006231fc>] kernel_thread_starter+0x0/0xc no locks held by swapper/0/1. Last Breaking-Event-Address: [<00000000003d76c6>] blkcg_policy_register+0xc6/0xe0 ---[ end trace b8ef4903fcbf9dd3 ]--- This patch fixes the problem by ensuring all blkcg support code is inside CONFIG_CFQ_GROUP_IOSCHED. * blkcg_policy_cfq declaration and blkg_to_cfqg() definition are moved inside the first CONFIG_CFQ_GROUP_IOSCHED block. __maybe_unused is dropped from blkcg_policy_cfq decl. * blkcg_deactivate_poilcy() invocation is moved inside ifdef. This also makes the activation logic match cfq_init_queue(). * All blkcg_policy_[un]register() invocations are moved inside ifdef. Signed-off-by: Tejun Heo <tj@kernel.org> Reported-by: Heiko Carstens <heiko.carstens@de.ibm.com> LKML-Reference: <20120601112954.GC3535@osiris.boeblingen.de.ibm.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
10 years ago
cfq: fix cfqg ref handling when BLK_CGROUP && !CFQ_GROUP_IOSCHED When BLK_CGROUP is enabled but CFQ_GROUP_IOSCHED is, cfq ends up calling blkg_get/put() on dummy cfqg leading to the following crash. BUG: unable to handle kernel NULL pointer dereference at 00000000000000b0 IP: [<ffffffff813d44d8>] cfq_init_queue+0x258/0x430 PGD 0 Oops: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC CPU 0 Modules linked in: Pid: 1, comm: swapper/0 Not tainted 3.3.0-rc6-work+ #125 Bochs Bochs RIP: 0010:[<ffffffff813d44d8>] [<ffffffff813d44d8>] cfq_init_queue+0x258/0x430 RSP: 0018:ffff88001f9dfd80 EFLAGS: 00010046 RAX: ffff88001aefbbf0 RBX: ffff88001aeedbf0 RCX: 0000000000000100 RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffffffff820ffd40 RBP: ffff88001f9dfdd0 R08: 0000000000000000 R09: 0000000000000001 R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000000 R13: 0000000000000009 R14: ffff88001aefbc30 R15: 0000000000000003 FS: 0000000000000000(0000) GS:ffff88001fc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b CR2: 00000000000000b0 CR3: 000000000206f000 CR4: 00000000000006f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 Process swapper/0 (pid: 1, threadinfo ffff88001f9de000, task ffff88001f9dc040) Stack: ffff88001aeedbf0 ffff88001aefbdb0 ffff88001aef1548 ffff88001aefbbf0 ffff88001f9dfdd0 ffff88001aef1548 ffffffff820d6320 ffffffff8165ce30 ffffffff82c555e0 ffff88001aeebbf0 ffff88001f9dfe00 ffffffff813b0507 Call Trace: [<ffffffff813b0507>] elevator_init+0xd7/0x140 [<ffffffff813b83d5>] blk_init_allocated_queue+0x125/0x150 [<ffffffff813b94d3>] blk_init_queue_node+0x43/0x80 [<ffffffff813b9523>] blk_init_queue+0x13/0x20 [<ffffffff821aec00>] floppy_init+0x82/0xec7 [<ffffffff810001d2>] do_one_initcall+0x42/0x170 [<ffffffff821835fc>] kernel_init+0xcb/0x14f [<ffffffff81b40b24>] kernel_thread_helper+0x4/0x10 Code: 00 e8 1d 9e 76 00 48 8b 43 48 48 85 c0 48 89 83 28 03 00 00 74 07 4c 8b a0 10 ff ff ff 8b 15 b0 2e d0 00 85 d2 0f 85 49 01 00 00 <41> 8b 84 24 b0 00 00 00 85 c0 0f 8e 8c 01 00 00 83 e8 01 85 c0 RIP [<ffffffff813d44d8>] cfq_init_queue+0x258/0x430 Because cfq's blkcg support has a on/off switch, CFQ_GROUP_IOSCHED, separate from BLK_CGROUP, blkg access through cfqg needs to be conditioned on it. * Make blkg_to_cfqg() and cfqg_to_blkg() conditioned on CFQ_GROUP_IOSCHED. If disabled, they always return %NULL. * Introduce cfqg_get() and cfqg_put() conditioned on CFQ_GROUP_IOSCHED. If disabled, they are noops. Reported-by: Fengguang Wu <fengguang.wu@intel.com> Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Jens Axboe <axboe@kernel.dk>
10 years ago
cfq: fix cfqg ref handling when BLK_CGROUP && !CFQ_GROUP_IOSCHED When BLK_CGROUP is enabled but CFQ_GROUP_IOSCHED is, cfq ends up calling blkg_get/put() on dummy cfqg leading to the following crash. BUG: unable to handle kernel NULL pointer dereference at 00000000000000b0 IP: [<ffffffff813d44d8>] cfq_init_queue+0x258/0x430 PGD 0 Oops: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC CPU 0 Modules linked in: Pid: 1, comm: swapper/0 Not tainted 3.3.0-rc6-work+ #125 Bochs Bochs RIP: 0010:[<ffffffff813d44d8>] [<ffffffff813d44d8>] cfq_init_queue+0x258/0x430 RSP: 0018:ffff88001f9dfd80 EFLAGS: 00010046 RAX: ffff88001aefbbf0 RBX: ffff88001aeedbf0 RCX: 0000000000000100 RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffffffff820ffd40 RBP: ffff88001f9dfdd0 R08: 0000000000000000 R09: 0000000000000001 R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000000 R13: 0000000000000009 R14: ffff88001aefbc30 R15: 0000000000000003 FS: 0000000000000000(0000) GS:ffff88001fc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b CR2: 00000000000000b0 CR3: 000000000206f000 CR4: 00000000000006f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 Process swapper/0 (pid: 1, threadinfo ffff88001f9de000, task ffff88001f9dc040) Stack: ffff88001aeedbf0 ffff88001aefbdb0 ffff88001aef1548 ffff88001aefbbf0 ffff88001f9dfdd0 ffff88001aef1548 ffffffff820d6320 ffffffff8165ce30 ffffffff82c555e0 ffff88001aeebbf0 ffff88001f9dfe00 ffffffff813b0507 Call Trace: [<ffffffff813b0507>] elevator_init+0xd7/0x140 [<ffffffff813b83d5>] blk_init_allocated_queue+0x125/0x150 [<ffffffff813b94d3>] blk_init_queue_node+0x43/0x80 [<ffffffff813b9523>] blk_init_queue+0x13/0x20 [<ffffffff821aec00>] floppy_init+0x82/0xec7 [<ffffffff810001d2>] do_one_initcall+0x42/0x170 [<ffffffff821835fc>] kernel_init+0xcb/0x14f [<ffffffff81b40b24>] kernel_thread_helper+0x4/0x10 Code: 00 e8 1d 9e 76 00 48 8b 43 48 48 85 c0 48 89 83 28 03 00 00 74 07 4c 8b a0 10 ff ff ff 8b 15 b0 2e d0 00 85 d2 0f 85 49 01 00 00 <41> 8b 84 24 b0 00 00 00 85 c0 0f 8e 8c 01 00 00 83 e8 01 85 c0 RIP [<ffffffff813d44d8>] cfq_init_queue+0x258/0x430 Because cfq's blkcg support has a on/off switch, CFQ_GROUP_IOSCHED, separate from BLK_CGROUP, blkg access through cfqg needs to be conditioned on it. * Make blkg_to_cfqg() and cfqg_to_blkg() conditioned on CFQ_GROUP_IOSCHED. If disabled, they always return %NULL. * Introduce cfqg_get() and cfqg_put() conditioned on CFQ_GROUP_IOSCHED. If disabled, they are noops. Reported-by: Fengguang Wu <fengguang.wu@intel.com> Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Jens Axboe <axboe@kernel.dk>
10 years ago
cfq: fix cfqg ref handling when BLK_CGROUP && !CFQ_GROUP_IOSCHED When BLK_CGROUP is enabled but CFQ_GROUP_IOSCHED is, cfq ends up calling blkg_get/put() on dummy cfqg leading to the following crash. BUG: unable to handle kernel NULL pointer dereference at 00000000000000b0 IP: [<ffffffff813d44d8>] cfq_init_queue+0x258/0x430 PGD 0 Oops: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC CPU 0 Modules linked in: Pid: 1, comm: swapper/0 Not tainted 3.3.0-rc6-work+ #125 Bochs Bochs RIP: 0010:[<ffffffff813d44d8>] [<ffffffff813d44d8>] cfq_init_queue+0x258/0x430 RSP: 0018:ffff88001f9dfd80 EFLAGS: 00010046 RAX: ffff88001aefbbf0 RBX: ffff88001aeedbf0 RCX: 0000000000000100 RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffffffff820ffd40 RBP: ffff88001f9dfdd0 R08: 0000000000000000 R09: 0000000000000001 R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000000 R13: 0000000000000009 R14: ffff88001aefbc30 R15: 0000000000000003 FS: 0000000000000000(0000) GS:ffff88001fc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b CR2: 00000000000000b0 CR3: 000000000206f000 CR4: 00000000000006f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 Process swapper/0 (pid: 1, threadinfo ffff88001f9de000, task ffff88001f9dc040) Stack: ffff88001aeedbf0 ffff88001aefbdb0 ffff88001aef1548 ffff88001aefbbf0 ffff88001f9dfdd0 ffff88001aef1548 ffffffff820d6320 ffffffff8165ce30 ffffffff82c555e0 ffff88001aeebbf0 ffff88001f9dfe00 ffffffff813b0507 Call Trace: [<ffffffff813b0507>] elevator_init+0xd7/0x140 [<ffffffff813b83d5>] blk_init_allocated_queue+0x125/0x150 [<ffffffff813b94d3>] blk_init_queue_node+0x43/0x80 [<ffffffff813b9523>] blk_init_queue+0x13/0x20 [<ffffffff821aec00>] floppy_init+0x82/0xec7 [<ffffffff810001d2>] do_one_initcall+0x42/0x170 [<ffffffff821835fc>] kernel_init+0xcb/0x14f [<ffffffff81b40b24>] kernel_thread_helper+0x4/0x10 Code: 00 e8 1d 9e 76 00 48 8b 43 48 48 85 c0 48 89 83 28 03 00 00 74 07 4c 8b a0 10 ff ff ff 8b 15 b0 2e d0 00 85 d2 0f 85 49 01 00 00 <41> 8b 84 24 b0 00 00 00 85 c0 0f 8e 8c 01 00 00 83 e8 01 85 c0 RIP [<ffffffff813d44d8>] cfq_init_queue+0x258/0x430 Because cfq's blkcg support has a on/off switch, CFQ_GROUP_IOSCHED, separate from BLK_CGROUP, blkg access through cfqg needs to be conditioned on it. * Make blkg_to_cfqg() and cfqg_to_blkg() conditioned on CFQ_GROUP_IOSCHED. If disabled, they always return %NULL. * Introduce cfqg_get() and cfqg_put() conditioned on CFQ_GROUP_IOSCHED. If disabled, they are noops. Reported-by: Fengguang Wu <fengguang.wu@intel.com> Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Jens Axboe <axboe@kernel.dk>
10 years ago
cfq: fix cfqg ref handling when BLK_CGROUP && !CFQ_GROUP_IOSCHED When BLK_CGROUP is enabled but CFQ_GROUP_IOSCHED is, cfq ends up calling blkg_get/put() on dummy cfqg leading to the following crash. BUG: unable to handle kernel NULL pointer dereference at 00000000000000b0 IP: [<ffffffff813d44d8>] cfq_init_queue+0x258/0x430 PGD 0 Oops: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC CPU 0 Modules linked in: Pid: 1, comm: swapper/0 Not tainted 3.3.0-rc6-work+ #125 Bochs Bochs RIP: 0010:[<ffffffff813d44d8>] [<ffffffff813d44d8>] cfq_init_queue+0x258/0x430 RSP: 0018:ffff88001f9dfd80 EFLAGS: 00010046 RAX: ffff88001aefbbf0 RBX: ffff88001aeedbf0 RCX: 0000000000000100 RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffffffff820ffd40 RBP: ffff88001f9dfdd0 R08: 0000000000000000 R09: 0000000000000001 R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000000 R13: 0000000000000009 R14: ffff88001aefbc30 R15: 0000000000000003 FS: 0000000000000000(0000) GS:ffff88001fc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b CR2: 00000000000000b0 CR3: 000000000206f000 CR4: 00000000000006f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 Process swapper/0 (pid: 1, threadinfo ffff88001f9de000, task ffff88001f9dc040) Stack: ffff88001aeedbf0 ffff88001aefbdb0 ffff88001aef1548 ffff88001aefbbf0 ffff88001f9dfdd0 ffff88001aef1548 ffffffff820d6320 ffffffff8165ce30 ffffffff82c555e0 ffff88001aeebbf0 ffff88001f9dfe00 ffffffff813b0507 Call Trace: [<ffffffff813b0507>] elevator_init+0xd7/0x140 [<ffffffff813b83d5>] blk_init_allocated_queue+0x125/0x150 [<ffffffff813b94d3>] blk_init_queue_node+0x43/0x80 [<ffffffff813b9523>] blk_init_queue+0x13/0x20 [<ffffffff821aec00>] floppy_init+0x82/0xec7 [<ffffffff810001d2>] do_one_initcall+0x42/0x170 [<ffffffff821835fc>] kernel_init+0xcb/0x14f [<ffffffff81b40b24>] kernel_thread_helper+0x4/0x10 Code: 00 e8 1d 9e 76 00 48 8b 43 48 48 85 c0 48 89 83 28 03 00 00 74 07 4c 8b a0 10 ff ff ff 8b 15 b0 2e d0 00 85 d2 0f 85 49 01 00 00 <41> 8b 84 24 b0 00 00 00 85 c0 0f 8e 8c 01 00 00 83 e8 01 85 c0 RIP [<ffffffff813d44d8>] cfq_init_queue+0x258/0x430 Because cfq's blkcg support has a on/off switch, CFQ_GROUP_IOSCHED, separate from BLK_CGROUP, blkg access through cfqg needs to be conditioned on it. * Make blkg_to_cfqg() and cfqg_to_blkg() conditioned on CFQ_GROUP_IOSCHED. If disabled, they always return %NULL. * Introduce cfqg_get() and cfqg_put() conditioned on CFQ_GROUP_IOSCHED. If disabled, they are noops. Reported-by: Fengguang Wu <fengguang.wu@intel.com> Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Jens Axboe <axboe@kernel.dk>
10 years ago
cfq: fix cfqg ref handling when BLK_CGROUP && !CFQ_GROUP_IOSCHED When BLK_CGROUP is enabled but CFQ_GROUP_IOSCHED is, cfq ends up calling blkg_get/put() on dummy cfqg leading to the following crash. BUG: unable to handle kernel NULL pointer dereference at 00000000000000b0 IP: [<ffffffff813d44d8>] cfq_init_queue+0x258/0x430 PGD 0 Oops: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC CPU 0 Modules linked in: Pid: 1, comm: swapper/0 Not tainted 3.3.0-rc6-work+ #125 Bochs Bochs RIP: 0010:[<ffffffff813d44d8>] [<ffffffff813d44d8>] cfq_init_queue+0x258/0x430 RSP: 0018:ffff88001f9dfd80 EFLAGS: 00010046 RAX: ffff88001aefbbf0 RBX: ffff88001aeedbf0 RCX: 0000000000000100 RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffffffff820ffd40 RBP: ffff88001f9dfdd0 R08: 0000000000000000 R09: 0000000000000001 R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000000 R13: 0000000000000009 R14: ffff88001aefbc30 R15: 0000000000000003 FS: 0000000000000000(0000) GS:ffff88001fc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b CR2: 00000000000000b0 CR3: 000000000206f000 CR4: 00000000000006f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 Process swapper/0 (pid: 1, threadinfo ffff88001f9de000, task ffff88001f9dc040) Stack: ffff88001aeedbf0 ffff88001aefbdb0 ffff88001aef1548 ffff88001aefbbf0 ffff88001f9dfdd0 ffff88001aef1548 ffffffff820d6320 ffffffff8165ce30 ffffffff82c555e0 ffff88001aeebbf0 ffff88001f9dfe00 ffffffff813b0507 Call Trace: [<ffffffff813b0507>] elevator_init+0xd7/0x140 [<ffffffff813b83d5>] blk_init_allocated_queue+0x125/0x150 [<ffffffff813b94d3>] blk_init_queue_node+0x43/0x80 [<ffffffff813b9523>] blk_init_queue+0x13/0x20 [<ffffffff821aec00>] floppy_init+0x82/0xec7 [<ffffffff810001d2>] do_one_initcall+0x42/0x170 [<ffffffff821835fc>] kernel_init+0xcb/0x14f [<ffffffff81b40b24>] kernel_thread_helper+0x4/0x10 Code: 00 e8 1d 9e 76 00 48 8b 43 48 48 85 c0 48 89 83 28 03 00 00 74 07 4c 8b a0 10 ff ff ff 8b 15 b0 2e d0 00 85 d2 0f 85 49 01 00 00 <41> 8b 84 24 b0 00 00 00 85 c0 0f 8e 8c 01 00 00 83 e8 01 85 c0 RIP [<ffffffff813d44d8>] cfq_init_queue+0x258/0x430 Because cfq's blkcg support has a on/off switch, CFQ_GROUP_IOSCHED, separate from BLK_CGROUP, blkg access through cfqg needs to be conditioned on it. * Make blkg_to_cfqg() and cfqg_to_blkg() conditioned on CFQ_GROUP_IOSCHED. If disabled, they always return %NULL. * Introduce cfqg_get() and cfqg_put() conditioned on CFQ_GROUP_IOSCHED. If disabled, they are noops. Reported-by: Fengguang Wu <fengguang.wu@intel.com> Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Jens Axboe <axboe@kernel.dk>
10 years ago
cfq-iosched: implement hierarchy-ready cfq_group charge scaling Currently, cfqg charges are scaled directly according to cfqg->weight. Regardless of the number of active cfqgs or the amount of active weights, a given weight value always scales charge the same way. This works fine as long as all cfqgs are treated equally regardless of their positions in the hierarchy, which is what cfq currently implements. It can't work in hierarchical settings because the interpretation of a given weight value depends on where the weight is located in the hierarchy. This patch reimplements cfqg charge scaling so that it can be used to support hierarchy properly. The scheme is fairly simple and light-weight. * When a cfqg is added to the service tree, v(disktime)weight is calculated. It walks up the tree to root calculating the fraction it has in the hierarchy. At each level, the fraction can be calculated as cfqg->weight / parent->level_weight By compounding these, the global fraction of vdisktime the cfqg has claim to - vfraction - can be determined. * When the cfqg needs to be charged, the charge is scaled inversely proportionally to the vfraction. The new scaling scheme uses the same CFQ_SERVICE_SHIFT for fixed point representation as before; however, the smallest scaling factor is now 1 (ie. 1 << CFQ_SERVICE_SHIFT). This is different from before where 1 was for CFQ_WEIGHT_DEFAULT and higher weight would result in smaller scaling factor. While this shifts the global scale of vdisktime a bit, it doesn't change the relative relationships among cfqgs and the scheduling result isn't different. cfq_group_notify_queue_add uses fixed CFQ_IDLE_DELAY when appending new cfqg to the service tree. The specific value of CFQ_IDLE_DELAY didn't have any relevance to vdisktime before and is unlikely to cause any visible behavior difference now especially as the scale shift isn't that large. As the new scheme now makes proper distinction between cfqg->weight and ->leaf_weight, reverse the weight aliasing for root cfqgs. For root, both weights are now mapped to ->leaf_weight instead of the other way around. Because we're still using cfqg_flat_parent(), this patch shouldn't change the scheduling behavior in any noticeable way. v2: Beefed up comments on vfraction as requested by Vivek. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Vivek Goyal <vgoyal@redhat.com>
9 years ago
cfq-iosched: implement hierarchy-ready cfq_group charge scaling Currently, cfqg charges are scaled directly according to cfqg->weight. Regardless of the number of active cfqgs or the amount of active weights, a given weight value always scales charge the same way. This works fine as long as all cfqgs are treated equally regardless of their positions in the hierarchy, which is what cfq currently implements. It can't work in hierarchical settings because the interpretation of a given weight value depends on where the weight is located in the hierarchy. This patch reimplements cfqg charge scaling so that it can be used to support hierarchy properly. The scheme is fairly simple and light-weight. * When a cfqg is added to the service tree, v(disktime)weight is calculated. It walks up the tree to root calculating the fraction it has in the hierarchy. At each level, the fraction can be calculated as cfqg->weight / parent->level_weight By compounding these, the global fraction of vdisktime the cfqg has claim to - vfraction - can be determined. * When the cfqg needs to be charged, the charge is scaled inversely proportionally to the vfraction. The new scaling scheme uses the same CFQ_SERVICE_SHIFT for fixed point representation as before; however, the smallest scaling factor is now 1 (ie. 1 << CFQ_SERVICE_SHIFT). This is different from before where 1 was for CFQ_WEIGHT_DEFAULT and higher weight would result in smaller scaling factor. While this shifts the global scale of vdisktime a bit, it doesn't change the relative relationships among cfqgs and the scheduling result isn't different. cfq_group_notify_queue_add uses fixed CFQ_IDLE_DELAY when appending new cfqg to the service tree. The specific value of CFQ_IDLE_DELAY didn't have any relevance to vdisktime before and is unlikely to cause any visible behavior difference now especially as the scale shift isn't that large. As the new scheme now makes proper distinction between cfqg->weight and ->leaf_weight, reverse the weight aliasing for root cfqgs. For root, both weights are now mapped to ->leaf_weight instead of the other way around. Because we're still using cfqg_flat_parent(), this patch shouldn't change the scheduling behavior in any noticeable way. v2: Beefed up comments on vfraction as requested by Vivek. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Vivek Goyal <vgoyal@redhat.com>
9 years ago
cfq-iosched: implement hierarchy-ready cfq_group charge scaling Currently, cfqg charges are scaled directly according to cfqg->weight. Regardless of the number of active cfqgs or the amount of active weights, a given weight value always scales charge the same way. This works fine as long as all cfqgs are treated equally regardless of their positions in the hierarchy, which is what cfq currently implements. It can't work in hierarchical settings because the interpretation of a given weight value depends on where the weight is located in the hierarchy. This patch reimplements cfqg charge scaling so that it can be used to support hierarchy properly. The scheme is fairly simple and light-weight. * When a cfqg is added to the service tree, v(disktime)weight is calculated. It walks up the tree to root calculating the fraction it has in the hierarchy. At each level, the fraction can be calculated as cfqg->weight / parent->level_weight By compounding these, the global fraction of vdisktime the cfqg has claim to - vfraction - can be determined. * When the cfqg needs to be charged, the charge is scaled inversely proportionally to the vfraction. The new scaling scheme uses the same CFQ_SERVICE_SHIFT for fixed point representation as before; however, the smallest scaling factor is now 1 (ie. 1 << CFQ_SERVICE_SHIFT). This is different from before where 1 was for CFQ_WEIGHT_DEFAULT and higher weight would result in smaller scaling factor. While this shifts the global scale of vdisktime a bit, it doesn't change the relative relationships among cfqgs and the scheduling result isn't different. cfq_group_notify_queue_add uses fixed CFQ_IDLE_DELAY when appending new cfqg to the service tree. The specific value of CFQ_IDLE_DELAY didn't have any relevance to vdisktime before and is unlikely to cause any visible behavior difference now especially as the scale shift isn't that large. As the new scheme now makes proper distinction between cfqg->weight and ->leaf_weight, reverse the weight aliasing for root cfqgs. For root, both weights are now mapped to ->leaf_weight instead of the other way around. Because we're still using cfqg_flat_parent(), this patch shouldn't change the scheduling behavior in any noticeable way. v2: Beefed up comments on vfraction as requested by Vivek. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Vivek Goyal <vgoyal@redhat.com>
9 years ago
block: convert to pos and nr_sectors accessors With recent cleanups, there is no place where low level driver directly manipulates request fields. This means that the 'hard' request fields always equal the !hard fields. Convert all rq->sectors, nr_sectors and current_nr_sectors references to accessors. While at it, drop superflous blk_rq_pos() < 0 test in swim.c. [ Impact: use pos and nr_sectors accessors ] Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Geert Uytterhoeven <Geert.Uytterhoeven@sonycom.com> Tested-by: Grant Likely <grant.likely@secretlab.ca> Acked-by: Grant Likely <grant.likely@secretlab.ca> Tested-by: Adrian McMenamin <adrian@mcmen.demon.co.uk> Acked-by: Adrian McMenamin <adrian@mcmen.demon.co.uk> Acked-by: Mike Miller <mike.miller@hp.com> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Bartlomiej Zolnierkiewicz <bzolnier@gmail.com> Cc: Borislav Petkov <petkovbb@googlemail.com> Cc: Sergei Shtylyov <sshtylyov@ru.mvista.com> Cc: Eric Moore <Eric.Moore@lsi.com> Cc: Alan Stern <stern@rowland.harvard.edu> Cc: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp> Cc: Pete Zaitcev <zaitcev@redhat.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Paul Clements <paul.clements@steeleye.com> Cc: Tim Waugh <tim@cyberelk.net> Cc: Jeff Garzik <jgarzik@pobox.com> Cc: Jeremy Fitzhardinge <jeremy@xensource.com> Cc: Alex Dubov <oakad@yahoo.com> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Dario Ballabio <ballabio_dario@emc.com> Cc: David S. Miller <davem@davemloft.net> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: unsik Kim <donari75@gmail.com> Cc: Laurent Vivier <Laurent@lvivier.info> Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
13 years ago