original development tree for Linux kernel GTP module; now long in mainline.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2327 lines
55 KiB

include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
12 years ago
Add a dentry op to allow processes to be held during pathwalk transit Add a dentry op (d_manage) to permit a filesystem to hold a process and make it sleep when it tries to transit away from one of that filesystem's directories during a pathwalk. The operation is keyed off a new dentry flag (DCACHE_MANAGE_TRANSIT). The filesystem is allowed to be selective about which processes it holds and which it permits to continue on or prohibits from transiting from each flagged directory. This will allow autofs to hold up client processes whilst letting its userspace daemon through to maintain the directory or the stuff behind it or mounted upon it. The ->d_manage() dentry operation: int (*d_manage)(struct path *path, bool mounting_here); takes a pointer to the directory about to be transited away from and a flag indicating whether the transit is undertaken by do_add_mount() or do_move_mount() skipping through a pile of filesystems mounted on a mountpoint. It should return 0 if successful and to let the process continue on its way; -EISDIR to prohibit the caller from skipping to overmounted filesystems or automounting, and to use this directory; or some other error code to return to the user. ->d_manage() is called with namespace_sem writelocked if mounting_here is true and no other locks held, so it may sleep. However, if mounting_here is true, it may not initiate or wait for a mount or unmount upon the parameter directory, even if the act is actually performed by userspace. Within fs/namei.c, follow_managed() is extended to check with d_manage() first on each managed directory, before transiting away from it or attempting to automount upon it. follow_down() is renamed follow_down_one() and should only be used where the filesystem deliberately intends to avoid management steps (e.g. autofs). A new follow_down() is added that incorporates the loop done by all other callers of follow_down() (do_add/move_mount(), autofs and NFSD; whilst AFS, NFS and CIFS do use it, their use is removed by converting them to use d_automount()). The new follow_down() calls d_manage() as appropriate. It also takes an extra parameter to indicate if it is being called from mount code (with namespace_sem writelocked) which it passes to d_manage(). follow_down() ignores automount points so that it can be used to mount on them. __follow_mount_rcu() is made to abort rcu-walk mode if it hits a directory with DCACHE_MANAGE_TRANSIT set on the basis that we're probably going to have to sleep. It would be possible to enter d_manage() in rcu-walk mode too, and have that determine whether to abort or not itself. That would allow the autofs daemon to continue on in rcu-walk mode. Note that DCACHE_MANAGE_TRANSIT on a directory should be cleared when it isn't required as every tranist from that directory will cause d_manage() to be invoked. It can always be set again when necessary. ========================== WHAT THIS MEANS FOR AUTOFS ========================== Autofs currently uses the lookup() inode op and the d_revalidate() dentry op to trigger the automounting of indirect mounts, and both of these can be called with i_mutex held. autofs knows that the i_mutex will be held by the caller in lookup(), and so can drop it before invoking the daemon - but this isn't so for d_revalidate(), since the lock is only held on _some_ of the code paths that call it. This means that autofs can't risk dropping i_mutex from its d_revalidate() function before it calls the daemon. The bug could manifest itself as, for example, a process that's trying to validate an automount dentry that gets made to wait because that dentry is expired and needs cleaning up: mkdir S ffffffff8014e05a 0 32580 24956 Call Trace: [<ffffffff885371fd>] :autofs4:autofs4_wait+0x674/0x897 [<ffffffff80127f7d>] avc_has_perm+0x46/0x58 [<ffffffff8009fdcf>] autoremove_wake_function+0x0/0x2e [<ffffffff88537be6>] :autofs4:autofs4_expire_wait+0x41/0x6b [<ffffffff88535cfc>] :autofs4:autofs4_revalidate+0x91/0x149 [<ffffffff80036d96>] __lookup_hash+0xa0/0x12f [<ffffffff80057a2f>] lookup_create+0x46/0x80 [<ffffffff800e6e31>] sys_mkdirat+0x56/0xe4 versus the automount daemon which wants to remove that dentry, but can't because the normal process is holding the i_mutex lock: automount D ffffffff8014e05a 0 32581 1 32561 Call Trace: [<ffffffff80063c3f>] __mutex_lock_slowpath+0x60/0x9b [<ffffffff8000ccf1>] do_path_lookup+0x2ca/0x2f1 [<ffffffff80063c89>] .text.lock.mutex+0xf/0x14 [<ffffffff800e6d55>] do_rmdir+0x77/0xde [<ffffffff8005d229>] tracesys+0x71/0xe0 [<ffffffff8005d28d>] tracesys+0xd5/0xe0 which means that the system is deadlocked. This patch allows autofs to hold up normal processes whilst the daemon goes ahead and does things to the dentry tree behind the automouter point without risking a deadlock as almost no locks are held in d_manage() and none in d_automount(). Signed-off-by: David Howells <dhowells@redhat.com> Was-Acked-by: Ian Kent <raven@themaw.net> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
11 years ago
knfsd: clear both setuid and setgid whenever a chown is done Currently, knfsd only clears the setuid bit if the owner of a file is changed on a SETATTR call, and only clears the setgid bit if the group is changed. POSIX says this in the spec for chown(): "If the specified file is a regular file, one or more of the S_IXUSR, S_IXGRP, or S_IXOTH bits of the file mode are set, and the process does not have appropriate privileges, the set-user-ID (S_ISUID) and set-group-ID (S_ISGID) bits of the file mode shall be cleared upon successful return from chown()." If I'm reading this correctly, then knfsd is doing this wrong. It should be clearing both the setuid and setgid bit on any SETATTR that changes the uid or gid. This wasn't really as noticable before, but now that the ATTR_KILL_S*ID bits are a no-op for the NFS client, it's more evident. This patch corrects the nfsd_setattr logic so that this occurs. It also does a bit of cleanup to the function. There is also one small behavioral change. If a SETATTR call comes in that changes the uid/gid and the mode, then we now only clear the setgid bit if the group execute bit isn't set. The setgid bit without a group execute bit signifies mandatory locking and we likely don't want to clear the bit in that case. Since there is no call in POSIX that should generate a SETATTR call like this, then this should rarely happen, but it's worth noting. Signed-off-by: Jeff Layton <jlayton@redhat.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
14 years ago
knfsd: clear both setuid and setgid whenever a chown is done Currently, knfsd only clears the setuid bit if the owner of a file is changed on a SETATTR call, and only clears the setgid bit if the group is changed. POSIX says this in the spec for chown(): "If the specified file is a regular file, one or more of the S_IXUSR, S_IXGRP, or S_IXOTH bits of the file mode are set, and the process does not have appropriate privileges, the set-user-ID (S_ISUID) and set-group-ID (S_ISGID) bits of the file mode shall be cleared upon successful return from chown()." If I'm reading this correctly, then knfsd is doing this wrong. It should be clearing both the setuid and setgid bit on any SETATTR that changes the uid or gid. This wasn't really as noticable before, but now that the ATTR_KILL_S*ID bits are a no-op for the NFS client, it's more evident. This patch corrects the nfsd_setattr logic so that this occurs. It also does a bit of cleanup to the function. There is also one small behavioral change. If a SETATTR call comes in that changes the uid/gid and the mode, then we now only clear the setgid bit if the group execute bit isn't set. The setgid bit without a group execute bit signifies mandatory locking and we likely don't want to clear the bit in that case. Since there is no call in POSIX that should generate a SETATTR call like this, then this should rarely happen, but it's worth noting. Signed-off-by: Jeff Layton <jlayton@redhat.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
14 years ago
Inconsistent setattr behaviour There is an inconsistency seen in the behaviour of nfs compared to other local filesystems on linux when changing owner or group of a directory. If the directory has SUID/SGID flags set, on changing owner or group on the directory, the flags are stripped off on nfs. These flags are maintained on other filesystems such as ext3. To reproduce on a nfs share or local filesystem, run the following commands mkdir test; chmod +s+g test; chown user1 test; ls -ld test On the nfs share, the flags are stripped and the output seen is drwxr-xr-x 2 user1 root 4096 Feb 23 2009 test On other local filesystems(ex: ext3), the flags are not stripped and the output seen is drwsr-sr-x 2 user1 root 4096 Feb 23 13:57 test chown_common() called from sys_chown() will only strip the flags if the inode is not a directory. static int chown_common(struct dentry * dentry, uid_t user, gid_t group) { .. if (!S_ISDIR(inode->i_mode)) newattrs.ia_valid |= ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_KILL_PRIV; .. } See: http://www.opengroup.org/onlinepubs/7990989775/xsh/chown.html "If the path argument refers to a regular file, the set-user-ID (S_ISUID) and set-group-ID (S_ISGID) bits of the file mode are cleared upon successful return from chown(), unless the call is made by a process with appropriate privileges, in which case it is implementation-dependent whether these bits are altered. If chown() is successfully invoked on a file that is not a regular file, these bits may be cleared. These bits are defined in <sys/stat.h>." The behaviour as it stands does not appear to violate POSIX. However the actions performed are inconsistent when comparing ext3 and nfs. Signed-off-by: Sachin Prabhu <sprabhu@redhat.com> Acked-by: Jeff Layton <jlayton@redhat.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
13 years ago
knfsd: clear both setuid and setgid whenever a chown is done Currently, knfsd only clears the setuid bit if the owner of a file is changed on a SETATTR call, and only clears the setgid bit if the group is changed. POSIX says this in the spec for chown(): "If the specified file is a regular file, one or more of the S_IXUSR, S_IXGRP, or S_IXOTH bits of the file mode are set, and the process does not have appropriate privileges, the set-user-ID (S_ISUID) and set-group-ID (S_ISGID) bits of the file mode shall be cleared upon successful return from chown()." If I'm reading this correctly, then knfsd is doing this wrong. It should be clearing both the setuid and setgid bit on any SETATTR that changes the uid or gid. This wasn't really as noticable before, but now that the ATTR_KILL_S*ID bits are a no-op for the NFS client, it's more evident. This patch corrects the nfsd_setattr logic so that this occurs. It also does a bit of cleanup to the function. There is also one small behavioral change. If a SETATTR call comes in that changes the uid/gid and the mode, then we now only clear the setgid bit if the group execute bit isn't set. The setgid bit without a group execute bit signifies mandatory locking and we likely don't want to clear the bit in that case. Since there is no call in POSIX that should generate a SETATTR call like this, then this should rarely happen, but it's worth noting. Signed-off-by: Jeff Layton <jlayton@redhat.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
14 years ago
knfsd: clear both setuid and setgid whenever a chown is done Currently, knfsd only clears the setuid bit if the owner of a file is changed on a SETATTR call, and only clears the setgid bit if the group is changed. POSIX says this in the spec for chown(): "If the specified file is a regular file, one or more of the S_IXUSR, S_IXGRP, or S_IXOTH bits of the file mode are set, and the process does not have appropriate privileges, the set-user-ID (S_ISUID) and set-group-ID (S_ISGID) bits of the file mode shall be cleared upon successful return from chown()." If I'm reading this correctly, then knfsd is doing this wrong. It should be clearing both the setuid and setgid bit on any SETATTR that changes the uid or gid. This wasn't really as noticable before, but now that the ATTR_KILL_S*ID bits are a no-op for the NFS client, it's more evident. This patch corrects the nfsd_setattr logic so that this occurs. It also does a bit of cleanup to the function. There is also one small behavioral change. If a SETATTR call comes in that changes the uid/gid and the mode, then we now only clear the setgid bit if the group execute bit isn't set. The setgid bit without a group execute bit signifies mandatory locking and we likely don't want to clear the bit in that case. Since there is no call in POSIX that should generate a SETATTR call like this, then this should rarely happen, but it's worth noting. Signed-off-by: Jeff Layton <jlayton@redhat.com> Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
14 years ago
Implement file posix capabilities Implement file posix capabilities. This allows programs to be given a subset of root's powers regardless of who runs them, without having to use setuid and giving the binary all of root's powers. This version works with Kaigai Kohei's userspace tools, found at http://www.kaigai.gr.jp/index.php. For more information on how to use this patch, Chris Friedhoff has posted a nice page at http://www.friedhoff.org/fscaps.html. Changelog: Nov 27: Incorporate fixes from Andrew Morton (security-introduce-file-caps-tweaks and security-introduce-file-caps-warning-fix) Fix Kconfig dependency. Fix change signaling behavior when file caps are not compiled in. Nov 13: Integrate comments from Alexey: Remove CONFIG_ ifdef from capability.h, and use %zd for printing a size_t. Nov 13: Fix endianness warnings by sparse as suggested by Alexey Dobriyan. Nov 09: Address warnings of unused variables at cap_bprm_set_security when file capabilities are disabled, and simultaneously clean up the code a little, by pulling the new code into a helper function. Nov 08: For pointers to required userspace tools and how to use them, see http://www.friedhoff.org/fscaps.html. Nov 07: Fix the calculation of the highest bit checked in check_cap_sanity(). Nov 07: Allow file caps to be enabled without CONFIG_SECURITY, since capabilities are the default. Hook cap_task_setscheduler when !CONFIG_SECURITY. Move capable(TASK_KILL) to end of cap_task_kill to reduce audit messages. Nov 05: Add secondary calls in selinux/hooks.c to task_setioprio and task_setscheduler so that selinux and capabilities with file cap support can be stacked. Sep 05: As Seth Arnold points out, uid checks are out of place for capability code. Sep 01: Define task_setscheduler, task_setioprio, cap_task_kill, and task_setnice to make sure a user cannot affect a process in which they called a program with some fscaps. One remaining question is the note under task_setscheduler: are we ok with CAP_SYS_NICE being sufficient to confine a process to a cpuset? It is a semantic change, as without fsccaps, attach_task doesn't allow CAP_SYS_NICE to override the uid equivalence check. But since it uses security_task_setscheduler, which elsewhere is used where CAP_SYS_NICE can be used to override the uid equivalence check, fixing it might be tough. task_setscheduler note: this also controls cpuset:attach_task. Are we ok with CAP_SYS_NICE being used to confine to a cpuset? task_setioprio task_setnice sys_setpriority uses this (through set_one_prio) for another process. Need same checks as setrlimit Aug 21: Updated secureexec implementation to reflect the fact that euid and uid might be the same and nonzero, but the process might still have elevated caps. Aug 15: Handle endianness of xattrs. Enforce capability version match between kernel and disk. Enforce that no bits beyond the known max capability are set, else return -EPERM. With this extra processing, it may be worth reconsidering doing all the work at bprm_set_security rather than d_instantiate. Aug 10: Always call getxattr at bprm_set_security, rather than caching it at d_instantiate. [morgan@kernel.org: file-caps clean up for linux/capability.h] [bunk@kernel.org: unexport cap_inode_killpriv] Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: James Morris <jmorris@namei.org> Cc: Chris Wright <chrisw@sous-sol.org> Cc: Andrew Morgan <morgan@kernel.org> Signed-off-by: Andrew Morgan <morgan@kernel.org> Signed-off-by: Adrian Bunk <bunk@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
14 years ago
[PATCH] nfsd: lockdep annotation while doing a kernel make modules_install install over an NFS mount. ============================================= [ INFO: possible recursive locking detected ] --------------------------------------------- nfsd/9550 is trying to acquire lock: (&inode->i_mutex){--..}, at: [<c034c845>] mutex_lock+0x1c/0x1f but task is already holding lock: (&inode->i_mutex){--..}, at: [<c034c845>] mutex_lock+0x1c/0x1f other info that might help us debug this: 2 locks held by nfsd/9550: #0: (hash_sem){..--}, at: [<cc895223>] exp_readlock+0xd/0xf [nfsd] #1: (&inode->i_mutex){--..}, at: [<c034c845>] mutex_lock+0x1c/0x1f stack backtrace: [<c0103508>] show_trace_log_lvl+0x58/0x152 [<c0103b8b>] show_trace+0xd/0x10 [<c0103c2f>] dump_stack+0x19/0x1b [<c012aa57>] __lock_acquire+0x77a/0x9a3 [<c012af4a>] lock_acquire+0x60/0x80 [<c034c6c2>] __mutex_lock_slowpath+0xa7/0x20e [<c034c845>] mutex_lock+0x1c/0x1f [<c0162edc>] vfs_unlink+0x34/0x8a [<cc891d98>] nfsd_unlink+0x18f/0x1e2 [nfsd] [<cc89884f>] nfsd3_proc_remove+0x95/0xa2 [nfsd] [<cc88f0d4>] nfsd_dispatch+0xc0/0x178 [nfsd] [<c033e84d>] svc_process+0x3a5/0x5ed [<cc88f5ba>] nfsd+0x1a7/0x305 [nfsd] [<c0101005>] kernel_thread_helper+0x5/0xb DWARF2 unwinder stuck at kernel_thread_helper+0x5/0xb Leftover inexact backtrace: [<c0103b8b>] show_trace+0xd/0x10 [<c0103c2f>] dump_stack+0x19/0x1b [<c012aa57>] __lock_acquire+0x77a/0x9a3 [<c012af4a>] lock_acquire+0x60/0x80 [<c034c6c2>] __mutex_lock_slowpath+0xa7/0x20e [<c034c845>] mutex_lock+0x1c/0x1f [<c0162edc>] vfs_unlink+0x34/0x8a [<cc891d98>] nfsd_unlink+0x18f/0x1e2 [nfsd] [<cc89884f>] nfsd3_proc_remove+0x95/0xa2 [nfsd] [<cc88f0d4>] nfsd_dispatch+0xc0/0x178 [nfsd] [<c033e84d>] svc_process+0x3a5/0x5ed [<cc88f5ba>] nfsd+0x1a7/0x305 [nfsd] [<c0101005>] kernel_thread_helper+0x5/0xb ============================================= [ INFO: possible recursive locking detected ] --------------------------------------------- nfsd/9580 is trying to acquire lock: (&inode->i_mutex){--..}, at: [<c034cc1d>] mutex_lock+0x1c/0x1f but task is already holding lock: (&inode->i_mutex){--..}, at: [<c034cc1d>] mutex_lock+0x1c/0x1f other info that might help us debug this: 2 locks held by nfsd/9580: #0: (hash_sem){..--}, at: [<cc89522b>] exp_readlock+0xd/0xf [nfsd] #1: (&inode->i_mutex){--..}, at: [<c034cc1d>] mutex_lock+0x1c/0x1f stack backtrace: [<c0103508>] show_trace_log_lvl+0x58/0x152 [<c0103b8b>] show_trace+0xd/0x10 [<c0103c2f>] dump_stack+0x19/0x1b [<c012aa63>] __lock_acquire+0x77a/0x9a3 [<c012af56>] lock_acquire+0x60/0x80 [<c034ca9a>] __mutex_lock_slowpath+0xa7/0x20e [<c034cc1d>] mutex_lock+0x1c/0x1f [<cc892ad1>] nfsd_setattr+0x2c8/0x499 [nfsd] [<cc893ede>] nfsd_create_v3+0x31b/0x4ac [nfsd] [<cc8984a1>] nfsd3_proc_create+0x128/0x138 [nfsd] [<cc88f0d4>] nfsd_dispatch+0xc0/0x178 [nfsd] [<c033ec1d>] svc_process+0x3a5/0x5ed [<cc88f5ba>] nfsd+0x1a7/0x305 [nfsd] [<c0101005>] kernel_thread_helper+0x5/0xb DWARF2 unwinder stuck at kernel_thread_helper+0x5/0xb Leftover inexact backtrace: [<c0103b8b>] show_trace+0xd/0x10 [<c0103c2f>] dump_stack+0x19/0x1b [<c012aa63>] __lock_acquire+0x77a/0x9a3 [<c012af56>] lock_acquire+0x60/0x80 [<c034ca9a>] __mutex_lock_slowpath+0xa7/0x20e [<c034cc1d>] mutex_lock+0x1c/0x1f [<cc892ad1>] nfsd_setattr+0x2c8/0x499 [nfsd] [<cc893ede>] nfsd_create_v3+0x31b/0x4ac [nfsd] [<cc8984a1>] nfsd3_proc_create+0x128/0x138 [nfsd] [<cc88f0d4>] nfsd_dispatch+0xc0/0x178 [nfsd] [<c033ec1d>] svc_process+0x3a5/0x5ed [<cc88f5ba>] nfsd+0x1a7/0x305 [nfsd] [<c0101005>] kernel_thread_helper+0x5/0xb Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Neil Brown <neilb@suse.de> Cc: Ingo Molnar <mingo@elte.hu> Cc: Arjan van de Ven <arjan@infradead.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
15 years ago
[PATCH] nfsd: lockdep annotation while doing a kernel make modules_install install over an NFS mount. ============================================= [ INFO: possible recursive locking detected ] --------------------------------------------- nfsd/9550 is trying to acquire lock: (&inode->i_mutex){--..}, at: [<c034c845>] mutex_lock+0x1c/0x1f but task is already holding lock: (&inode->i_mutex){--..}, at: [<c034c845>] mutex_lock+0x1c/0x1f other info that might help us debug this: 2 locks held by nfsd/9550: #0: (hash_sem){..--}, at: [<cc895223>] exp_readlock+0xd/0xf [nfsd] #1: (&inode->i_mutex){--..}, at: [<c034c845>] mutex_lock+0x1c/0x1f stack backtrace: [<c0103508>] show_trace_log_lvl+0x58/0x152 [<c0103b8b>] show_trace+0xd/0x10 [<c0103c2f>] dump_stack+0x19/0x1b [<c012aa57>] __lock_acquire+0x77a/0x9a3 [<c012af4a>] lock_acquire+0x60/0x80 [<c034c6c2>] __mutex_lock_slowpath+0xa7/0x20e [<c034c845>] mutex_lock+0x1c/0x1f [<c0162edc>] vfs_unlink+0x34/0x8a [<cc891d98>] nfsd_unlink+0x18f/0x1e2 [nfsd] [<cc89884f>] nfsd3_proc_remove+0x95/0xa2 [nfsd] [<cc88f0d4>] nfsd_dispatch+0xc0/0x178 [nfsd] [<c033e84d>] svc_process+0x3a5/0x5ed [<cc88f5ba>] nfsd+0x1a7/0x305 [nfsd] [<c0101005>] kernel_thread_helper+0x5/0xb DWARF2 unwinder stuck at kernel_thread_helper+0x5/0xb Leftover inexact backtrace: [<c0103b8b>] show_trace+0xd/0x10 [<c0103c2f>] dump_stack+0x19/0x1b [<c012aa57>] __lock_acquire+0x77a/0x9a3 [<c012af4a>] lock_acquire+0x60/0x80 [<c034c6c2>] __mutex_lock_slowpath+0xa7/0x20e [<c034c845>] mutex_lock+0x1c/0x1f [<c0162edc>] vfs_unlink+0x34/0x8a [<cc891d98>] nfsd_unlink+0x18f/0x1e2 [nfsd] [<cc89884f>] nfsd3_proc_remove+0x95/0xa2 [nfsd] [<cc88f0d4>] nfsd_dispatch+0xc0/0x178 [nfsd] [<c033e84d>] svc_process+0x3a5/0x5ed [<cc88f5ba>] nfsd+0x1a7/0x305 [nfsd] [<c0101005>] kernel_thread_helper+0x5/0xb ============================================= [ INFO: possible recursive locking detected ] --------------------------------------------- nfsd/9580 is trying to acquire lock: (&inode->i_mutex){--..}, at: [<c034cc1d>] mutex_lock+0x1c/0x1f but task is already holding lock: (&inode->i_mutex){--..}, at: [<c034cc1d>] mutex_lock+0x1c/0x1f other info that might help us debug this: 2 locks held by nfsd/9580: #0: (hash_sem){..--}, at: [<cc89522b>] exp_readlock+0xd/0xf [nfsd] #1: (&inode->i_mutex){--..}, at: [<c034cc1d>] mutex_lock+0x1c/0x1f stack backtrace: [<c0103508>] show_trace_log_lvl+0x58/0x152 [<c0103b8b>] show_trace+0xd/0x10 [<c0103c2f>] dump_stack+0x19/0x1b [<c012aa63>] __lock_acquire+0x77a/0x9a3 [<c012af56>] lock_acquire+0x60/0x80 [<c034ca9a>] __mutex_lock_slowpath+0xa7/0x20e [<c034cc1d>] mutex_lock+0x1c/0x1f [<cc892ad1>] nfsd_setattr+0x2c8/0x499 [nfsd] [<cc893ede>] nfsd_create_v3+0x31b/0x4ac [nfsd] [<cc8984a1>] nfsd3_proc_create+0x128/0x138 [nfsd] [<cc88f0d4>] nfsd_dispatch+0xc0/0x178 [nfsd] [<c033ec1d>] svc_process+0x3a5/0x5ed [<cc88f5ba>] nfsd+0x1a7/0x305 [nfsd] [<c0101005>] kernel_thread_helper+0x5/0xb DWARF2 unwinder stuck at kernel_thread_helper+0x5/0xb Leftover inexact backtrace: [<c0103b8b>] show_trace+0xd/0x10 [<c0103c2f>] dump_stack+0x19/0x1b [<c012aa63>] __lock_acquire+0x77a/0x9a3 [<c012af56>] lock_acquire+0x60/0x80 [<c034ca9a>] __mutex_lock_slowpath+0xa7/0x20e [<c034cc1d>] mutex_lock+0x1c/0x1f [<cc892ad1>] nfsd_setattr+0x2c8/0x499 [nfsd] [<cc893ede>] nfsd_create_v3+0x31b/0x4ac [nfsd] [<cc8984a1>] nfsd3_proc_create+0x128/0x138 [nfsd] [<cc88f0d4>] nfsd_dispatch+0xc0/0x178 [nfsd] [<c033ec1d>] svc_process+0x3a5/0x5ed [<cc88f5ba>] nfsd+0x1a7/0x305 [nfsd] [<c0101005>] kernel_thread_helper+0x5/0xb Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Neil Brown <neilb@suse.de> Cc: Ingo Molnar <mingo@elte.hu> Cc: Arjan van de Ven <arjan@infradead.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
15 years ago
[PATCH] nfsd: lockdep annotation while doing a kernel make modules_install install over an NFS mount. ============================================= [ INFO: possible recursive locking detected ] --------------------------------------------- nfsd/9550 is trying to acquire lock: (&inode->i_mutex){--..}, at: [<c034c845>] mutex_lock+0x1c/0x1f but task is already holding lock: (&inode->i_mutex){--..}, at: [<c034c845>] mutex_lock+0x1c/0x1f other info that might help us debug this: 2 locks held by nfsd/9550: #0: (hash_sem){..--}, at: [<cc895223>] exp_readlock+0xd/0xf [nfsd] #1: (&inode->i_mutex){--..}, at: [<c034c845>] mutex_lock+0x1c/0x1f stack backtrace: [<c0103508>] show_trace_log_lvl+0x58/0x152 [<c0103b8b>] show_trace+0xd/0x10 [<c0103c2f>] dump_stack+0x19/0x1b [<c012aa57>] __lock_acquire+0x77a/0x9a3 [<c012af4a>] lock_acquire+0x60/0x80 [<c034c6c2>] __mutex_lock_slowpath+0xa7/0x20e [<c034c845>] mutex_lock+0x1c/0x1f [<c0162edc>] vfs_unlink+0x34/0x8a [<cc891d98>] nfsd_unlink+0x18f/0x1e2 [nfsd] [<cc89884f>] nfsd3_proc_remove+0x95/0xa2 [nfsd] [<cc88f0d4>] nfsd_dispatch+0xc0/0x178 [nfsd] [<c033e84d>] svc_process+0x3a5/0x5ed [<cc88f5ba>] nfsd+0x1a7/0x305 [nfsd] [<c0101005>] kernel_thread_helper+0x5/0xb DWARF2 unwinder stuck at kernel_thread_helper+0x5/0xb Leftover inexact backtrace: [<c0103b8b>] show_trace+0xd/0x10 [<c0103c2f>] dump_stack+0x19/0x1b [<c012aa57>] __lock_acquire+0x77a/0x9a3 [<c012af4a>] lock_acquire+0x60/0x80 [<c034c6c2>] __mutex_lock_slowpath+0xa7/0x20e [<c034c845>] mutex_lock+0x1c/0x1f [<c0162edc>] vfs_unlink+0x34/0x8a [<cc891d98>] nfsd_unlink+0x18f/0x1e2 [nfsd] [<cc89884f>] nfsd3_proc_remove+0x95/0xa2 [nfsd] [<cc88f0d4>] nfsd_dispatch+0xc0/0x178 [nfsd] [<c033e84d>] svc_process+0x3a5/0x5ed [<cc88f5ba>] nfsd+0x1a7/0x305 [nfsd] [<c0101005>] kernel_thread_helper+0x5/0xb ============================================= [ INFO: possible recursive locking detected ] --------------------------------------------- nfsd/9580 is trying to acquire lock: (&inode->i_mutex){--..}, at: [<c034cc1d>] mutex_lock+0x1c/0x1f but task is already holding lock: (&inode->i_mutex){--..}, at: [<c034cc1d>] mutex_lock+0x1c/0x1f other info that might help us debug this: 2 locks held by nfsd/9580: #0: (hash_sem){..--}, at: [<cc89522b>] exp_readlock+0xd/0xf [nfsd] #1: (&inode->i_mutex){--..}, at: [<c034cc1d>] mutex_lock+0x1c/0x1f stack backtrace: [<c0103508>] show_trace_log_lvl+0x58/0x152 [<c0103b8b>] show_trace+0xd/0x10 [<c0103c2f>] dump_stack+0x19/0x1b [<c012aa63>] __lock_acquire+0x77a/0x9a3 [<c012af56>] lock_acquire+0x60/0x80 [<c034ca9a>] __mutex_lock_slowpath+0xa7/0x20e [<c034cc1d>] mutex_lock+0x1c/0x1f [<cc892ad1>] nfsd_setattr+0x2c8/0x499 [nfsd] [<cc893ede>] nfsd_create_v3+0x31b/0x4ac [nfsd] [<cc8984a1>] nfsd3_proc_create+0x128/0x138 [nfsd] [<cc88f0d4>] nfsd_dispatch+0xc0/0x178 [nfsd] [<c033ec1d>] svc_process+0x3a5/0x5ed [<cc88f5ba>] nfsd+0x1a7/0x305 [nfsd] [<c0101005>] kernel_thread_helper+0x5/0xb DWARF2 unwinder stuck at kernel_thread_helper+0x5/0xb Leftover inexact backtrace: [<c0103b8b>] show_trace+0xd/0x10 [<c0103c2f>] dump_stack+0x19/0x1b [<c012aa63>] __lock_acquire+0x77a/0x9a3 [<c012af56>] lock_acquire+0x60/0x80 [<c034ca9a>] __mutex_lock_slowpath+0xa7/0x20e [<c034cc1d>] mutex_lock+0x1c/0x1f [<cc892ad1>] nfsd_setattr+0x2c8/0x499 [nfsd] [<cc893ede>] nfsd_create_v3+0x31b/0x4ac [nfsd] [<cc8984a1>] nfsd3_proc_create+0x128/0x138 [nfsd] [<cc88f0d4>] nfsd_dispatch+0xc0/0x178 [nfsd] [<c033ec1d>] svc_process+0x3a5/0x5ed [<cc88f5ba>] nfsd+0x1a7/0x305 [nfsd] [<c0101005>] kernel_thread_helper+0x5/0xb Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Neil Brown <neilb@suse.de> Cc: Ingo Molnar <mingo@elte.hu> Cc: Arjan van de Ven <arjan@infradead.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
15 years ago
[PATCH] nfsd: lockdep annotation while doing a kernel make modules_install install over an NFS mount. ============================================= [ INFO: possible recursive locking detected ] --------------------------------------------- nfsd/9550 is trying to acquire lock: (&inode->i_mutex){--..}, at: [<c034c845>] mutex_lock+0x1c/0x1f but task is already holding lock: (&inode->i_mutex){--..}, at: [<c034c845>] mutex_lock+0x1c/0x1f other info that might help us debug this: 2 locks held by nfsd/9550: #0: (hash_sem){..--}, at: [<cc895223>] exp_readlock+0xd/0xf [nfsd] #1: (&inode->i_mutex){--..}, at: [<c034c845>] mutex_lock+0x1c/0x1f stack backtrace: [<c0103508>] show_trace_log_lvl+0x58/0x152 [<c0103b8b>] show_trace+0xd/0x10 [<c0103c2f>] dump_stack+0x19/0x1b [<c012aa57>] __lock_acquire+0x77a/0x9a3 [<c012af4a>] lock_acquire+0x60/0x80 [<c034c6c2>] __mutex_lock_slowpath+0xa7/0x20e [<c034c845>] mutex_lock+0x1c/0x1f [<c0162edc>] vfs_unlink+0x34/0x8a [<cc891d98>] nfsd_unlink+0x18f/0x1e2 [nfsd] [<cc89884f>] nfsd3_proc_remove+0x95/0xa2 [nfsd] [<cc88f0d4>] nfsd_dispatch+0xc0/0x178 [nfsd] [<c033e84d>] svc_process+0x3a5/0x5ed [<cc88f5ba>] nfsd+0x1a7/0x305 [nfsd] [<c0101005>] kernel_thread_helper+0x5/0xb DWARF2 unwinder stuck at kernel_thread_helper+0x5/0xb Leftover inexact backtrace: [<c0103b8b>] show_trace+0xd/0x10 [<c0103c2f>] dump_stack+0x19/0x1b [<c012aa57>] __lock_acquire+0x77a/0x9a3 [<c012af4a>] lock_acquire+0x60/0x80 [<c034c6c2>] __mutex_lock_slowpath+0xa7/0x20e [<c034c845>] mutex_lock+0x1c/0x1f [<c0162edc>] vfs_unlink+0x34/0x8a [<cc891d98>] nfsd_unlink+0x18f/0x1e2 [nfsd] [<cc89884f>] nfsd3_proc_remove+0x95/0xa2 [nfsd] [<cc88f0d4>] nfsd_dispatch+0xc0/0x178 [nfsd] [<c033e84d>] svc_process+0x3a5/0x5ed [<cc88f5ba>] nfsd+0x1a7/0x305 [nfsd] [<c0101005>] kernel_thread_helper+0x5/0xb ============================================= [ INFO: possible recursive locking detected ] --------------------------------------------- nfsd/9580 is trying to acquire lock: (&inode->i_mutex){--..}, at: [<c034cc1d>] mutex_lock+0x1c/0x1f but task is already holding lock: (&inode->i_mutex){--..}, at: [<c034cc1d>] mutex_lock+0x1c/0x1f other info that might help us debug this: 2 locks held by nfsd/9580: #0: (hash_sem){..--}, at: [<cc89522b>] exp_readlock+0xd/0xf [nfsd] #1: (&inode->i_mutex){--..}, at: [<c034cc1d>] mutex_lock+0x1c/0x1f stack backtrace: [<c0103508>] show_trace_log_lvl+0x58/0x152 [<c0103b8b>] show_trace+0xd/0x10 [<c0103c2f>] dump_stack+0x19/0x1b [<c012aa63>] __lock_acquire+0x77a/0x9a3 [<c012af56>] lock_acquire+0x60/0x80 [<c034ca9a>] __mutex_lock_slowpath+0xa7/0x20e [<c034cc1d>] mutex_lock+0x1c/0x1f [<cc892ad1>] nfsd_setattr+0x2c8/0x499 [nfsd] [<cc893ede>] nfsd_create_v3+0x31b/0x4ac [nfsd] [<cc8984a1>] nfsd3_proc_create+0x128/0x138 [nfsd] [<cc88f0d4>] nfsd_dispatch+0xc0/0x178 [nfsd] [<c033ec1d>] svc_process+0x3a5/0x5ed [<cc88f5ba>] nfsd+0x1a7/0x305 [nfsd] [<c0101005>] kernel_thread_helper+0x5/0xb DWARF2 unwinder stuck at kernel_thread_helper+0x5/0xb Leftover inexact backtrace: [<c0103b8b>] show_trace+0xd/0x10 [<c0103c2f>] dump_stack+0x19/0x1b [<c012aa63>] __lock_acquire+0x77a/0x9a3 [<c012af56>] lock_acquire+0x60/0x80 [<c034ca9a>] __mutex_lock_slowpath+0xa7/0x20e [<c034cc1d>] mutex_lock+0x1c/0x1f [<cc892ad1>] nfsd_setattr+0x2c8/0x499 [nfsd] [<cc893ede>] nfsd_create_v3+0x31b/0x4ac [nfsd] [<cc8984a1>] nfsd3_proc_create+0x128/0x138 [nfsd] [<cc88f0d4>] nfsd_dispatch+0xc0/0x178 [nfsd] [<c033ec1d>] svc_process+0x3a5/0x5ed [<cc88f5ba>] nfsd+0x1a7/0x305 [nfsd] [<c0101005>] kernel_thread_helper+0x5/0xb Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Neil Brown <neilb@suse.de> Cc: Ingo Molnar <mingo@elte.hu> Cc: Arjan van de Ven <arjan@infradead.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
15 years ago