original development tree for Linux kernel GTP module; now long in mainline.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3682 lines
94 KiB

/*
* fs/cifs/file.c
*
* vfs operations that deal with files
*
* Copyright (C) International Business Machines Corp., 2002,2010
* Author(s): Steve French (sfrench@us.ibm.com)
* Jeremy Allison (jra@samba.org)
*
* This library is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation; either version 2.1 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
* the GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/fs.h>
#include <linux/backing-dev.h>
#include <linux/stat.h>
#include <linux/fcntl.h>
#include <linux/pagemap.h>
#include <linux/pagevec.h>
#include <linux/writeback.h>
#include <linux/task_io_accounting_ops.h>
#include <linux/delay.h>
#include <linux/mount.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -&gt; slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It&#39;s put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn&#39;t seem to be any matching order. * If the script can&#39;t find a place to put a new include (mostly because the file doesn&#39;t have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn&#39;t need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn&#39;t work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I&#39;m fairly confident about the coverage of this conversion patch. If there is a breakage, it&#39;s likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo &lt;tj@kernel.org&gt; Guess-its-ok-by: Christoph Lameter &lt;cl@linux-foundation.org&gt; Cc: Ingo Molnar &lt;mingo@redhat.com&gt; Cc: Lee Schermerhorn &lt;Lee.Schermerhorn@hp.com&gt;
12 years ago
#include <linux/slab.h>
#include <linux/swap.h>
#include <asm/div64.h>
#include "cifsfs.h"
#include "cifspdu.h"
#include "cifsglob.h"
#include "cifsproto.h"
#include "cifs_unicode.h"
#include "cifs_debug.h"
#include "cifs_fs_sb.h"
#include "fscache.h"
static inline int cifs_convert_flags(unsigned int flags)
{
if ((flags & O_ACCMODE) == O_RDONLY)
return GENERIC_READ;
else if ((flags & O_ACCMODE) == O_WRONLY)
return GENERIC_WRITE;
else if ((flags & O_ACCMODE) == O_RDWR) {
/* GENERIC_ALL is too much permission to request
can cause unnecessary access denied on create */
/* return GENERIC_ALL; */
return (GENERIC_READ | GENERIC_WRITE);
}
return (READ_CONTROL | FILE_WRITE_ATTRIBUTES | FILE_READ_ATTRIBUTES |
FILE_WRITE_EA | FILE_APPEND_DATA | FILE_WRITE_DATA |
FILE_READ_DATA);
}
static u32 cifs_posix_convert_flags(unsigned int flags)
{
u32 posix_flags = 0;
if ((flags & O_ACCMODE) == O_RDONLY)
posix_flags = SMB_O_RDONLY;
else if ((flags & O_ACCMODE) == O_WRONLY)
posix_flags = SMB_O_WRONLY;
else if ((flags & O_ACCMODE) == O_RDWR)
posix_flags = SMB_O_RDWR;
if (flags & O_CREAT) {
posix_flags |= SMB_O_CREAT;
if (flags & O_EXCL)
posix_flags |= SMB_O_EXCL;
} else if (flags & O_EXCL)
cifs_dbg(FYI, "Application %s pid %d has incorrectly set O_EXCL flag but not O_CREAT on file open. Ignoring O_EXCL\n",
current->comm, current->tgid);
if (flags & O_TRUNC)
posix_flags |= SMB_O_TRUNC;
/* be safe and imply O_SYNC for O_DSYNC */
vfs: Implement proper O_SYNC semantics While Linux provided an O_SYNC flag basically since day 1, it took until Linux 2.4.0-test12pre2 to actually get it implemented for filesystems, since that day we had generic_osync_around with only minor changes and the great &#34;For now, when the user asks for O_SYNC, we&#39;ll actually give O_DSYNC&#34; comment. This patch intends to actually give us real O_SYNC semantics in addition to the O_DSYNC semantics. After Jan&#39;s O_SYNC patches which are required before this patch it&#39;s actually surprisingly simple, we just need to figure out when to set the datasync flag to vfs_fsync_range and when not. This patch renames the existing O_SYNC flag to O_DSYNC while keeping it&#39;s numerical value to keep binary compatibility, and adds a new real O_SYNC flag. To guarantee backwards compatiblity it is defined as expanding to both the O_DSYNC and the new additional binary flag (__O_SYNC) to make sure we are backwards-compatible when compiled against the new headers. This also means that all places that don&#39;t care about the differences can just check O_DSYNC and get the right behaviour for O_SYNC, too - only places that actuall care need to check __O_SYNC in addition. Drivers and network filesystems have been updated in a fail safe way to always do the full sync magic if O_DSYNC is set. The few places setting O_SYNC for lower layers are kept that way for now to stay failsafe. We enforce that O_DSYNC is set when __O_SYNC is set early in the open path to make sure we always get these sane options. Note that parisc really screwed up their headers as they already define a O_DSYNC that has always been a no-op. We try to repair it by using it for the new O_DSYNC and redefinining O_SYNC to send both the traditional O_SYNC numerical value _and_ the O_DSYNC one. Cc: Richard Henderson &lt;rth@twiddle.net&gt; Cc: Ivan Kokshaysky &lt;ink@jurassic.park.msu.ru&gt; Cc: Grant Grundler &lt;grundler@parisc-linux.org&gt; Cc: &#34;David S. Miller&#34; &lt;davem@davemloft.net&gt; Cc: Ingo Molnar &lt;mingo@elte.hu&gt; Cc: &#34;H. Peter Anvin&#34; &lt;hpa@zytor.com&gt; Cc: Thomas Gleixner &lt;tglx@linutronix.de&gt; Cc: Al Viro &lt;viro@zeniv.linux.org.uk&gt; Cc: Andreas Dilger &lt;adilger@sun.com&gt; Acked-by: Trond Myklebust &lt;Trond.Myklebust@netapp.com&gt; Acked-by: Kyle McMartin &lt;kyle@mcmartin.ca&gt; Acked-by: Ulrich Drepper &lt;drepper@redhat.com&gt; Signed-off-by: Christoph Hellwig &lt;hch@lst.de&gt; Signed-off-by: Andrew Morton &lt;akpm@linux-foundation.org&gt; Signed-off-by: Jan Kara &lt;jack@suse.cz&gt;
12 years ago
if (flags & O_DSYNC)
posix_flags |= SMB_O_SYNC;
if (flags & O_DIRECTORY)
posix_flags |= SMB_O_DIRECTORY;
if (flags & O_NOFOLLOW)
posix_flags |= SMB_O_NOFOLLOW;
if (flags & O_DIRECT)
posix_flags |= SMB_O_DIRECT;
return posix_flags;
}
static inline int cifs_get_disposition(unsigned int flags)
{
if ((flags & (O_CREAT | O_EXCL)) == (O_CREAT | O_EXCL))
return FILE_CREATE;
else if ((flags & (O_CREAT | O_TRUNC)) == (O_CREAT | O_TRUNC))
return FILE_OVERWRITE_IF;
else if ((flags & O_CREAT) == O_CREAT)
return FILE_OPEN_IF;
else if ((flags & O_TRUNC) == O_TRUNC)
return FILE_OVERWRITE;
else
return FILE_OPEN;
}
int cifs_posix_open(char *full_path, struct inode **pinode,
struct super_block *sb, int mode, unsigned int f_flags,
__u32 *poplock, __u16 *pnetfid, unsigned int xid)
{
int rc;
FILE_UNIX_BASIC_INFO *presp_data;
__u32 posix_flags = 0;
struct cifs_sb_info *cifs_sb = CIFS_SB(sb);
struct cifs_fattr fattr;
struct tcon_link *tlink;
struct cifs_tcon *tcon;
cifs_dbg(FYI, "posix open %s\n", full_path);
presp_data = kzalloc(sizeof(FILE_UNIX_BASIC_INFO), GFP_KERNEL);
if (presp_data == NULL)
return -ENOMEM;
tlink = cifs_sb_tlink(cifs_sb);
if (IS_ERR(tlink)) {
rc = PTR_ERR(tlink);
goto posix_open_ret;
}
tcon = tlink_tcon(tlink);
mode &= ~current_umask();
posix_flags = cifs_posix_convert_flags(f_flags);
rc = CIFSPOSIXCreate(xid, tcon, posix_flags, mode, pnetfid, presp_data,
poplock, full_path, cifs_sb->local_nls,
cifs_sb->mnt_cifs_flags &
CIFS_MOUNT_MAP_SPECIAL_CHR);
cifs_put_tlink(tlink);
if (rc)
goto posix_open_ret;
if (presp_data->Type == cpu_to_le32(-1))
goto posix_open_ret; /* open ok, caller does qpathinfo */
if (!pinode)
goto posix_open_ret; /* caller does not need info */
cifs_unix_basic_to_fattr(&fattr, presp_data, cifs_sb);
/* get new inode and set it up */
if (*pinode == NULL) {
cifs_fill_uniqueid(sb, &fattr);
*pinode = cifs_iget(sb, &fattr);
if (!*pinode) {
rc = -ENOMEM;
goto posix_open_ret;
}
} else {
cifs_fattr_to_inode(*pinode, &fattr);
}
posix_open_ret:
kfree(presp_data);
return rc;
}
static int
cifs_nt_open(char *full_path, struct inode *inode, struct cifs_sb_info *cifs_sb,
struct cifs_tcon *tcon, unsigned int f_flags, __u32 *oplock,
struct cifs_fid *fid, unsigned int xid)
{
int rc;
int desired_access;
int disposition;
int create_options = CREATE_NOT_DIR;
FILE_ALL_INFO *buf;
struct TCP_Server_Info *server = tcon->ses->server;
struct cifs_open_parms oparms;
if (!server->ops->open)
return -ENOSYS;
desired_access = cifs_convert_flags(f_flags);
/*********************************************************************
* open flag mapping table:
*
* POSIX Flag CIFS Disposition
* ---------- ----------------
* O_CREAT FILE_OPEN_IF
* O_CREAT | O_EXCL FILE_CREATE
* O_CREAT | O_TRUNC FILE_OVERWRITE_IF
* O_TRUNC FILE_OVERWRITE
* none of the above FILE_OPEN
*
* Note that there is not a direct match between disposition
* FILE_SUPERSEDE (ie create whether or not file exists although
* O_CREAT | O_TRUNC is similar but truncates the existing
* file rather than creating a new file as FILE_SUPERSEDE does
* (which uses the attributes / metadata passed in on open call)
*?
*? O_SYNC is a reasonable match to CIFS writethrough flag
*? and the read write flags match reasonably. O_LARGEFILE
*? is irrelevant because largefile support is always used
*? by this client. Flags O_APPEND, O_DIRECT, O_DIRECTORY,
* O_FASYNC, O_NOFOLLOW, O_NONBLOCK need further investigation
*********************************************************************/
disposition = cifs_get_disposition(f_flags);
/* BB pass O_SYNC flag through on file attributes .. BB */
buf = kmalloc(sizeof(FILE_ALL_INFO), GFP_KERNEL);
if (!buf)
return -ENOMEM;
if (backup_cred(cifs_sb))
create_options |= CREATE_OPEN_BACKUP_INTENT;
oparms.tcon = tcon;
oparms.cifs_sb = cifs_sb;
oparms.desired_access = desired_access;
oparms.create_options = create_options;
oparms.disposition = disposition;
oparms.path = full_path;
oparms.fid = fid;
oparms.reconnect = false;
rc = server->ops->open(xid, &oparms, oplock, buf);
if (rc)
goto out;
if (tcon->unix_ext)
rc = cifs_get_inode_info_unix(&inode, full_path, inode->i_sb,
xid);
else
rc = cifs_get_inode_info(&inode, full_path, buf, inode->i_sb,
xid, &fid->netfid);
out:
kfree(buf);
return rc;
}
static bool
cifs_has_mand_locks(struct cifsInodeInfo *cinode)
{
struct cifs_fid_locks *cur;
bool has_locks = false;
down_read(&cinode->lock_sem);
list_for_each_entry(cur, &cinode->llist, llist) {
if (!list_empty(&cur->locks)) {
has_locks = true;
break;
}
}
up_read(&cinode->lock_sem);
return has_locks;
}
struct cifsFileInfo *
cifs_new_fileinfo(struct cifs_fid *fid, struct file *file,
struct tcon_link *tlink, __u32 oplock)
{
struct dentry *dentry = file->f_path.dentry;
struct inode *inode = dentry->d_inode;
struct cifsInodeInfo *cinode = CIFS_I(inode);
struct cifsFileInfo *cfile;
struct cifs_fid_locks *fdlocks;
struct cifs_tcon *tcon = tlink_tcon(tlink);
struct TCP_Server_Info *server = tcon->ses->server;
cfile = kzalloc(sizeof(struct cifsFileInfo), GFP_KERNEL);
if (cfile == NULL)
return cfile;
fdlocks = kzalloc(sizeof(struct cifs_fid_locks), GFP_KERNEL);
if (!fdlocks) {
kfree(cfile);
return NULL;
}
INIT_LIST_HEAD(&fdlocks->locks);
fdlocks->cfile = cfile;
cfile->llist = fdlocks;
down_write(&cinode->lock_sem);
list_add(&fdlocks->llist, &cinode->llist);
up_write(&cinode->lock_sem);
cfile->count = 1;
cfile->pid = current->tgid;
cfile->uid = current_fsuid();
cfile->dentry = dget(dentry);
cfile->f_flags = file->f_flags;
cfile->invalidHandle = false;
cfile->tlink = cifs_get_tlink(tlink);
INIT_WORK(&cfile->oplock_break, cifs_oplock_break);
mutex_init(&cfile->fh_mutex);
cifs_sb_active(inode->i_sb);
/*
* If the server returned a read oplock and we have mandatory brlocks,
* set oplock level to None.
*/
if (server->ops->is_read_op(oplock) && cifs_has_mand_locks(cinode)) {
cifs_dbg(FYI, "Reset oplock val from read to None due to mand locks\n");
oplock = 0;
}
spin_lock(&cifs_file_list_lock);
if (fid->pending_open->oplock != CIFS_OPLOCK_NO_CHANGE && oplock)
oplock = fid->pending_open->oplock;
list_del(&fid->pending_open->olist);
fid->purge_cache = false;
server->ops->set_fid(cfile, fid, oplock);
list_add(&cfile->tlist, &tcon->openFileList);
/* if readable file instance put first in list*/
if (file->f_mode & FMODE_READ)
list_add(&cfile->flist, &cinode->openFileList);
else
list_add_tail(&cfile->flist, &cinode->openFileList);
spin_unlock(&cifs_file_list_lock);
if (fid->purge_cache)
cifs_invalidate_mapping(inode);
file->private_data = cfile;
return cfile;
}
struct cifsFileInfo *
cifsFileInfo_get(struct cifsFileInfo *cifs_file)
{
spin_lock(&cifs_file_list_lock);
cifsFileInfo_get_locked(cifs_file);
spin_unlock(&cifs_file_list_lock);
return cifs_file;
}
/*
* Release a reference on the file private data. This may involve closing
* the filehandle out on the server. Must be called without holding
* cifs_file_list_lock.
*/
void cifsFileInfo_put(struct cifsFileInfo *cifs_file)
{
struct inode *inode = cifs_file->dentry->d_inode;
struct cifs_tcon *tcon = tlink_tcon(cifs_file->tlink);
struct TCP_Server_Info *server = tcon->ses->server;
struct cifsInodeInfo *cifsi = CIFS_I(inode);
struct super_block *sb = inode->i_sb;
struct cifs_sb_info *cifs_sb = CIFS_SB(sb);
struct cifsLockInfo *li, *tmp;
struct cifs_fid fid;
struct cifs_pending_open open;
spin_lock(&cifs_file_list_lock);
if (--cifs_file->count > 0) {
spin_unlock(&cifs_file_list_lock);
return;
}
if (server->ops->get_lease_key)
server->ops->get_lease_key(inode, &fid);
/* store open in pending opens to make sure we don't miss lease break */
cifs_add_pending_open_locked(&fid, cifs_file->tlink, &open);
/* remove it from the lists */
list_del(&cifs_file->flist);
list_del(&cifs_file->tlist);
if (list_empty(&cifsi->openFileList)) {
cifs_dbg(FYI, "closing last open instance for inode %p\n",
cifs_file->dentry->d_inode);
/*
* In strict cache mode we need invalidate mapping on the last
* close because it may cause a error when we open this file
* again and get at least level II oplock.
*/
if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_STRICT_IO)
CIFS_I(inode)->invalid_mapping = true;
cifs_set_oplock_level(cifsi, 0);
}
spin_unlock(&cifs_file_list_lock);
cancel_work_sync(&cifs_file->oplock_break);
if (!tcon->need_reconnect && !cifs_file->invalidHandle) {
struct TCP_Server_Info *server = tcon->ses->server;
unsigned int xid;
xid = get_xid();
if (server->ops->close)
server->ops->close(xid, tcon, &cifs_file->fid);
_free_xid(xid);
}
cifs_del_pending_open(&open);
/*
* Delete any outstanding lock records. We'll lose them when the file
* is closed anyway.
*/
down_write(&cifsi->lock_sem);
list_for_each_entry_safe(li, tmp, &cifs_file->llist->locks, llist) {
list_del(&li->llist);
cifs_del_lock_waiters(li);
kfree(li);
}
list_del(&cifs_file->llist->llist);
kfree(cifs_file->llist);
up_write(&cifsi->lock_sem);
cifs_put_tlink(cifs_file->tlink);
dput(cifs_file->dentry);
cifs_sb_deactive(sb);
kfree(cifs_file);
}
int cifs_open(struct inode *inode, struct file *file)
{
int rc = -EACCES;
unsigned int xid;
__u32 oplock;
struct cifs_sb_info *cifs_sb;
struct TCP_Server_Info *server;
struct cifs_tcon *tcon;
struct tcon_link *tlink;
struct cifsFileInfo *cfile = NULL;
char *full_path = NULL;
bool posix_open_ok = false;
struct cifs_fid fid;
struct cifs_pending_open open;
xid = get_xid();
cifs_sb = CIFS_SB(inode->i_sb);
tlink = cifs_sb_tlink(cifs_sb);
if (IS_ERR(tlink)) {
free_xid(xid);
return PTR_ERR(tlink);
}
tcon = tlink_tcon(tlink);
server = tcon->ses->server;
full_path = build_path_from_dentry(file->f_path.dentry);
if (full_path == NULL) {
cifs: Fix incorrect return code being printed in cFYI messages FreeXid() along with freeing Xid does add a cifsFYI debug message that prints rc (return code) as well. In some code paths where we set/return error code after calling FreeXid(), incorrect error code is being printed when cifsFYI is enabled. This could be misleading in few cases. For eg. In cifs_open() if cifs_fill_filedata() returns a valid pointer to cifsFileInfo, FreeXid() prints rc=-13 whereas 0 is actually being returned. Fix this by setting rc before calling FreeXid(). Basically convert FreeXid(xid); rc = -ERR; return -ERR; =&gt; FreeXid(xid); return rc; [Note that Christoph would like to replace the GetXid/FreeXid calls, which are primarily used for debugging. This seems like a good longer term goal, but although there is an alternative tracing facility, there are no examples yet available that I know of that we can use (yet) to convert this cifs function entry/exit logging, and for creating an identifier that we can use to correlate all dmesg log entries for a particular vfs operation (ie identify all log entries for a particular vfs request to cifs: e.g. a particular close or read or write or byte range lock call ... and just using the thread id is harder). Eventually when a replacement for this is available (e.g. when NFS switches over and various samples to look at in other file systems) we can remove the GetXid/FreeXid macro but in the meantime multiple people use this run time configurable logging all the time for debugging, and Suresh&#39;s patch fixes a problem which made it harder to notice some low memory problems in the log so it is worthwhile to fix this problem until a better logging approach is able to be used] Acked-by: Jeff Layton &lt;jlayton@redhat.com&gt; Signed-off-by: Suresh Jayaraman &lt;sjayaraman@suse.de&gt; Signed-off-by: Steve French &lt;sfrench@us.ibm.com&gt;
13 years ago
rc = -ENOMEM;
goto out;
}
cifs_dbg(FYI, "inode = 0x%p file flags are 0x%x for %s\n",
inode, file->f_flags, full_path);
if (server->oplocks)
oplock = REQ_OPLOCK;
else
oplock = 0;
if (!tcon->broken_posix_open && tcon->unix_ext &&
cap_unix(tcon->ses) && (CIFS_UNIX_POSIX_PATH_OPS_CAP &
le64_to_cpu(tcon->fsUnixInfo.Capability))) {
/* can not refresh inode info since size could be stale */
rc = cifs_posix_open(full_path, &inode, inode->i_sb,
cifs_sb->mnt_file_mode /* ignored */,
file->f_flags, &oplock, &fid.netfid, xid);
if (rc == 0) {
cifs_dbg(FYI, "posix open succeeded\n");
posix_open_ok = true;
} else if ((rc == -EINVAL) || (rc == -EOPNOTSUPP)) {
if (tcon->ses->serverNOS)
cifs_dbg(VFS, "server %s of type %s returned unexpected error on SMB posix open, disabling posix open support. Check if server update available.\n",
tcon->ses->serverName,
tcon->ses->serverNOS);
tcon->broken_posix_open = true;
} else if ((rc != -EIO) && (rc != -EREMOTE) &&
(rc != -EOPNOTSUPP)) /* path not found or net err */
goto out;
/*
* Else fallthrough to retry open the old way on network i/o
* or DFS errors.
*/
}
if (server->ops->get_lease_key)
server->ops->get_lease_key(inode, &fid);
cifs_add_pending_open(&fid, tlink, &open);
if (!posix_open_ok) {
if (server->ops->get_lease_key)
server->ops->get_lease_key(inode, &fid);
rc = cifs_nt_open(full_path, inode, cifs_sb, tcon,
file->f_flags, &oplock, &fid, xid);
if (rc) {
cifs_del_pending_open(&open);
goto out;
}
}
cfile = cifs_new_fileinfo(&fid, file, tlink, oplock);
if (cfile == NULL) {
if (server->ops->close)
server->ops->close(xid, tcon, &fid);
cifs_del_pending_open(&open);
rc = -ENOMEM;
goto out;
}
cifs_fscache_set_inode_cookie(inode, file);
if ((oplock & CIFS_CREATE_ACTION) && !posix_open_ok && tcon->unix_ext) {
/*
* Time to set mode which we can not set earlier due to
* problems creating new read-only files.
*/
struct cifs_unix_set_info_args args = {
.mode = inode->i_mode,
.uid = INVALID_UID, /* no change */
.gid = INVALID_GID, /* no change */
.ctime = NO_CHANGE_64,
.atime = NO_CHANGE_64,
.mtime = NO_CHANGE_64,
.device = 0,
};