#!/usr/bin/python # # Copyright (C) 2016 Google, Inc # Written by Simon Glass # # SPDX-License-Identifier: GPL-2.0+ # import copy from optparse import OptionError, OptionParser import os import struct import sys # Bring in the patman libraries our_path = os.path.dirname(os.path.realpath(__file__)) sys.path.append(os.path.join(our_path, '../patman')) import fdt import fdt_select import fdt_util # When we see these properties we ignore them - i.e. do not create a structure member PROP_IGNORE_LIST = [ '#address-cells', '#gpio-cells', '#size-cells', 'compatible', 'linux,phandle', "status", 'phandle', 'u-boot,dm-pre-reloc', 'u-boot,dm-tpl', 'u-boot,dm-spl', ] # C type declarations for the tyues we support TYPE_NAMES = { fdt.TYPE_INT: 'fdt32_t', fdt.TYPE_BYTE: 'unsigned char', fdt.TYPE_STRING: 'const char *', fdt.TYPE_BOOL: 'bool', }; STRUCT_PREFIX = 'dtd_' VAL_PREFIX = 'dtv_' def Conv_name_to_c(name): """Convert a device-tree name to a C identifier Args: name: Name to convert Return: String containing the C version of this name """ str = name.replace('@', '_at_') str = str.replace('-', '_') str = str.replace(',', '_') str = str.replace('.', '_') str = str.replace('/', '__') return str def TabTo(num_tabs, str): if len(str) >= num_tabs * 8: return str + ' ' return str + '\t' * (num_tabs - len(str) // 8) class DtbPlatdata: """Provide a means to convert device tree binary data to platform data The output of this process is C structures which can be used in space- constrained encvironments where the ~3KB code overhead of device tree code is not affordable. Properties: fdt: Fdt object, referencing the device tree _dtb_fname: Filename of the input device tree binary file _valid_nodes: A list of Node object with compatible strings _options: Command-line options _phandle_node: A dict of nodes indexed by phandle number (1, 2...) _outfile: The current output file (sys.stdout or a real file) _lines: Stashed list of output lines for outputting in the future _phandle_node: A dict of Nodes indexed by phandle (an integer) """ def __init__(self, dtb_fname, options): self._dtb_fname = dtb_fname self._valid_nodes = None self._options = options self._phandle_node = {} self._outfile = None self._lines = [] def SetupOutput(self, fname): """Set up the output destination Once this is done, future calls to self.Out() will output to this file. Args: fname: Filename to send output to, or '-' for stdout """ if fname == '-': self._outfile = sys.stdout else: self._outfile = open(fname, 'w') def Out(self, str): """Output a string to the output file Args: str: String to output """ self._outfile.write(str) def Buf(self, str): """Buffer up a string to send later Args: str: String to add to our 'buffer' list """ self._lines.append(str) def GetBuf(self): """Get the contents of the output buffer, and clear it Returns: The output buffer, which is then cleared for future use """ lines = self._lines self._lines = [] return lines def GetValue(self, type, value): """Get a value as a C expression For integers this returns a byte-swapped (little-endian) hex string For bytes this returns a hex string, e.g. 0x12 For strings this returns a literal string enclosed in quotes For booleans this return 'true' Args: type: Data type (fdt_util) value: Data value, as a string of bytes """ if type == fdt.TYPE_INT: return '%#x' % fdt_util.fdt32_to_cpu(value) elif type == fdt.TYPE_BYTE: return '%#x' % ord(value[0]) elif type == fdt.TYPE_STRING: return '"%s"' % value elif type == fdt.TYPE_BOOL: return 'true' def GetCompatName(self, node): """Get a node's first compatible string as a C identifier Args: node: Node object to check Return: C identifier for the first compatible string """ compat = node.props['compatible'].value if type(compat) == list: compat = compat[0] return Conv_name_to_c(compat) def ScanDtb(self): """Scan the device tree to obtain a tree of notes and properties Once this is done, self.fdt.GetRoot() can be called to obtain the device tree root node, and progress from there. """ self.fdt = fdt_select.FdtScan(self._dtb_fname) def ScanNode(self, root): for node in root.subnodes: if 'compatible' in node.props: status = node.props.get('status') if (not options.include_disabled and not status or status.value != 'disabled'): self._valid_nodes.append(node) phandle_prop = node.props.get('phandle') if phandle_prop: phandle = phandle_prop.GetPhandle() self._phandle_node[phandle] = node # recurse to handle any subnodes self.ScanNode(node); def ScanTree(self): """Scan the device tree for useful information This fills in the following properties: _phandle_node: A dict of Nodes indexed by phandle (an integer) _valid_nodes: A list of nodes we wish to consider include in the platform data """ self._phandle_node = {} self._valid_nodes = [] return self.ScanNode(self.fdt.GetRoot()); for node in self.fdt.GetRoot().subnodes: if 'compatible' in node.props: status = node.props.get('status') if (not options.include_disabled and not status or status.value != 'disabled'): node_list.append(node) phandle_prop = node.props.get('phandle') if phandle_prop: phandle = phandle_prop.GetPhandle() self._phandle_node[phandle] = node self._valid_nodes = node_list def IsPhandle(self, prop): """Check if a node contains phandles We have no reliable way of detecting whether a node uses a phandle or not. As an interim measure, use a list of known property names. Args: prop: Prop object to check Return: True if the object value contains phandles, else False """ if prop.name in ['clocks']: return True return False def ScanStructs(self): """Scan the device tree building up the C structures we will use. Build a dict keyed by C struct name containing a dict of Prop object for each struct field (keyed by property name). Where the same struct appears multiple times, try to use the 'widest' property, i.e. the one with a type which can express all others. Once the widest property is determined, all other properties are updated to match that width. """ structs = {} for node in self._valid_nodes: node_name = self.GetCompatName(node) fields = {} # Get a list of all the valid properties in this node. for name, prop in node.props.items(): if name not in PROP_IGNORE_LIST and name[0] != '#': fields[name] = copy.deepcopy(prop) # If we've seen this node_name before, update the existing struct. if node_name in structs: struct = structs[node_name] for name, prop in fields.items(): oldprop = struct.get(name) if oldprop: oldprop.Widen(prop) else: struct[name] = prop # Otherwise store this as a new struct. else: structs[node_name] = fields upto = 0 for node in self._valid_nodes: node_name = self.GetCompatName(node) struct = structs[node_name] for name, prop in node.props.items(): if name not in PROP_IGNORE_LIST and name[0] != '#': prop.Widen(struct[name]) upto += 1 return structs def GenerateStructs(self, structs): """Generate struct defintions for the platform data This writes out the body of a header file consisting of structure definitions for node in self._valid_nodes. See the documentation in README.of-plat for more information. """ self.Out('#include \n') self.Out('#include \n') # Output the struct definition for name in sorted(structs): self.Out('struct %s%s {\n' % (STRUCT_PREFIX, name)); for pname in sorted(structs[name]): prop = structs[name][pname] if self.IsPhandle(prop): # For phandles, include a reference to the target self.Out('\t%s%s[%d]' % (TabTo(2, 'struct phandle_2_cell'), Conv_name_to_c(prop.name), len(prop.value) / 2)) else: ptype = TYPE_NAMES[prop.type] self.Out('\t%s%s' % (TabTo(2, ptype), Conv_name_to_c(prop.name))) if type(prop.value) == list: self.Out('[%d]' % len(prop.value)) self.Out(';\n') self.Out('};\n') def GenerateTables(self): """Generate device defintions for the platform data This writes out C platform data initialisation data and U_BOOT_DEVICE() declarations for each valid node. See the documentation in README.of-plat for more information. """ self.Out('#include \n') self.Out('#include \n') self.Out('#include \n') self.Out('\n') node_txt_list = [] for node in self._valid_nodes: struct_name = self.GetCompatName(node) var_name = Conv_name_to_c(node.name) self.Buf('static struct %s%s %s%s = {\n' % (STRUCT_PREFIX, struct_name, VAL_PREFIX, var_name)) for pname, prop in node.props.items(): if pname in PROP_IGNORE_LIST or pname[0] == '#': continue ptype = TYPE_NAMES[prop.type] member_name = Conv_name_to_c(prop.name) self.Buf('\t%s= ' % TabTo(3, '.' + member_name)) # Special handling for lists if type(prop.value) == list: self.Buf('{') vals = [] # For phandles, output a reference to the platform data # of the target node. if self.IsPhandle(prop): # Process the list as pairs of (phandle, id) it = iter(prop.value) for phandle_cell, id_cell in zip(it, it): phandle = fdt_util.fdt32_to_cpu(phandle_cell) id = fdt_util.fdt32_to_cpu(id_cell) target_node = self._phandle_node[phandle] name = Conv_name_to_c(target_node.name) vals.append('{&%s%s, %d}' % (VAL_PREFIX, name, id)) else: for val in prop.value: vals.append(self.GetValue(prop.type, val)) self.Buf(', '.join(vals)) self.Buf('}') else: self.Buf(self.GetValue(prop.type, prop.value)) self.Buf(',\n') self.Buf('};\n') # Add a device declaration self.Buf('U_BOOT_DEVICE(%s) = {\n' % var_name) self.Buf('\t.name\t\t= "%s",\n' % struct_name) self.Buf('\t.platdata\t= &%s%s,\n' % (VAL_PREFIX, var_name)) self.Buf('\t.platdata_size\t= sizeof(%s%s),\n' % (VAL_PREFIX, var_name)) self.Buf('};\n') self.Buf('\n') # Output phandle target nodes first, since they may be referenced # by others if 'phandle' in node.props: self.Out(''.join(self.GetBuf())) else: node_txt_list.append(self.GetBuf()) # Output all the nodes which are not phandle targets themselves, but # may reference them. This avoids the need for forward declarations. for node_txt in node_txt_list: self.Out(''.join(node_txt)) if __name__ != "__main__": pass parser = OptionParser() parser.add_option('-d', '--dtb-file', action='store', help='Specify the .dtb input file') parser.add_option('--include-disabled', action='store_true', help='Include disabled nodes') parser.add_option('-o', '--output', action='store', default='-', help='Select output filename') (options, args) = parser.parse_args() if not args: raise ValueError('Please specify a command: struct, platdata') plat = DtbPlatdata(options.dtb_file, options) plat.ScanDtb() plat.ScanTree() plat.SetupOutput(options.output) structs = plat.ScanStructs() for cmd in args[0].split(','): if cmd == 'struct': plat.GenerateStructs(structs) elif cmd == 'platdata': plat.GenerateTables() else: raise ValueError("Unknown command '%s': (use: struct, platdata)" % cmd)