/* * Copyright (C) 2016 Freescale Semiconductor, Inc. * * SPDX-License-Identifier: GPL-2.0+ */ #include #include #include #include #include #include #include DECLARE_GLOBAL_DATA_PTR; scg_p scg1_regs = (scg_p)SCG1_RBASE; static u32 scg_src_get_rate(enum scg_clk clksrc) { u32 reg; switch (clksrc) { case SCG_SOSC_CLK: reg = readl(&scg1_regs->sosccsr); if (!(reg & SCG_SOSC_CSR_SOSCVLD_MASK)) return 0; return 24000000; case SCG_FIRC_CLK: reg = readl(&scg1_regs->firccsr); if (!(reg & SCG_FIRC_CSR_FIRCVLD_MASK)) return 0; return 48000000; case SCG_SIRC_CLK: reg = readl(&scg1_regs->sirccsr); if (!(reg & SCG_SIRC_CSR_SIRCVLD_MASK)) return 0; return 16000000; case SCG_ROSC_CLK: reg = readl(&scg1_regs->rtccsr); if (!(reg & SCG_ROSC_CSR_ROSCVLD_MASK)) return 0; return 32768; default: break; } return 0; } static u32 scg_sircdiv_get_rate(enum scg_clk clk) { u32 reg, val, rate; u32 shift, mask; switch (clk) { case SCG_SIRC_DIV1_CLK: mask = SCG_SIRCDIV_DIV1_MASK; shift = SCG_SIRCDIV_DIV1_SHIFT; break; case SCG_SIRC_DIV2_CLK: mask = SCG_SIRCDIV_DIV2_MASK; shift = SCG_SIRCDIV_DIV2_SHIFT; break; case SCG_SIRC_DIV3_CLK: mask = SCG_SIRCDIV_DIV3_MASK; shift = SCG_SIRCDIV_DIV3_SHIFT; break; default: return 0; } reg = readl(&scg1_regs->sirccsr); if (!(reg & SCG_SIRC_CSR_SIRCVLD_MASK)) return 0; reg = readl(&scg1_regs->sircdiv); val = (reg & mask) >> shift; if (!val) /*clock disabled*/ return 0; rate = scg_src_get_rate(SCG_SIRC_CLK); rate = rate / (1 << (val - 1)); return rate; } static u32 scg_fircdiv_get_rate(enum scg_clk clk) { u32 reg, val, rate; u32 shift, mask; switch (clk) { case SCG_FIRC_DIV1_CLK: mask = SCG_FIRCDIV_DIV1_MASK; shift = SCG_FIRCDIV_DIV1_SHIFT; break; case SCG_FIRC_DIV2_CLK: mask = SCG_FIRCDIV_DIV2_MASK; shift = SCG_FIRCDIV_DIV2_SHIFT; break; case SCG_FIRC_DIV3_CLK: mask = SCG_FIRCDIV_DIV3_MASK; shift = SCG_FIRCDIV_DIV3_SHIFT; break; default: return 0; } reg = readl(&scg1_regs->firccsr); if (!(reg & SCG_FIRC_CSR_FIRCVLD_MASK)) return 0; reg = readl(&scg1_regs->fircdiv); val = (reg & mask) >> shift; if (!val) /*clock disabled*/ return 0; rate = scg_src_get_rate(SCG_FIRC_CLK); rate = rate / (1 << (val - 1)); return rate; } static u32 scg_soscdiv_get_rate(enum scg_clk clk) { u32 reg, val, rate; u32 shift, mask; switch (clk) { case SCG_SOSC_DIV1_CLK: mask = SCG_SOSCDIV_DIV1_MASK; shift = SCG_SOSCDIV_DIV1_SHIFT; break; case SCG_SOSC_DIV2_CLK: mask = SCG_SOSCDIV_DIV2_MASK; shift = SCG_SOSCDIV_DIV2_SHIFT; break; case SCG_SOSC_DIV3_CLK: mask = SCG_SOSCDIV_DIV3_MASK; shift = SCG_SOSCDIV_DIV3_SHIFT; break; default: return 0; } reg = readl(&scg1_regs->sosccsr); if (!(reg & SCG_SOSC_CSR_SOSCVLD_MASK)) return 0; reg = readl(&scg1_regs->soscdiv); val = (reg & mask) >> shift; if (!val) /*clock disabled*/ return 0; rate = scg_src_get_rate(SCG_SOSC_CLK); rate = rate / (1 << (val - 1)); return rate; } static u32 scg_apll_pfd_get_rate(enum scg_clk clk) { u32 reg, val, rate; u32 shift, mask, gate, valid; switch (clk) { case SCG_APLL_PFD0_CLK: gate = SCG_PLL_PFD0_GATE_MASK; valid = SCG_PLL_PFD0_VALID_MASK; mask = SCG_PLL_PFD0_FRAC_MASK; shift = SCG_PLL_PFD0_FRAC_SHIFT; break; case SCG_APLL_PFD1_CLK: gate = SCG_PLL_PFD1_GATE_MASK; valid = SCG_PLL_PFD1_VALID_MASK; mask = SCG_PLL_PFD1_FRAC_MASK; shift = SCG_PLL_PFD1_FRAC_SHIFT; break; case SCG_APLL_PFD2_CLK: gate = SCG_PLL_PFD2_GATE_MASK; valid = SCG_PLL_PFD2_VALID_MASK; mask = SCG_PLL_PFD2_FRAC_MASK; shift = SCG_PLL_PFD2_FRAC_SHIFT; break; case SCG_APLL_PFD3_CLK: gate = SCG_PLL_PFD3_GATE_MASK; valid = SCG_PLL_PFD3_VALID_MASK; mask = SCG_PLL_PFD3_FRAC_MASK; shift = SCG_PLL_PFD3_FRAC_SHIFT; break; default: return 0; } reg = readl(&scg1_regs->apllpfd); if (reg & gate || !(reg & valid)) return 0; clk_debug("scg_apll_pfd_get_rate reg 0x%x\n", reg); val = (reg & mask) >> shift; rate = decode_pll(PLL_A7_APLL); rate = rate / val * 18; clk_debug("scg_apll_pfd_get_rate rate %u\n", rate); return rate; } static u32 scg_spll_pfd_get_rate(enum scg_clk clk) { u32 reg, val, rate; u32 shift, mask, gate, valid; switch (clk) { case SCG_SPLL_PFD0_CLK: gate = SCG_PLL_PFD0_GATE_MASK; valid = SCG_PLL_PFD0_VALID_MASK; mask = SCG_PLL_PFD0_FRAC_MASK; shift = SCG_PLL_PFD0_FRAC_SHIFT; break; case SCG_SPLL_PFD1_CLK: gate = SCG_PLL_PFD1_GATE_MASK; valid = SCG_PLL_PFD1_VALID_MASK; mask = SCG_PLL_PFD1_FRAC_MASK; shift = SCG_PLL_PFD1_FRAC_SHIFT; break; case SCG_SPLL_PFD2_CLK: gate = SCG_PLL_PFD2_GATE_MASK; valid = SCG_PLL_PFD2_VALID_MASK; mask = SCG_PLL_PFD2_FRAC_MASK; shift = SCG_PLL_PFD2_FRAC_SHIFT; break; case SCG_SPLL_PFD3_CLK: gate = SCG_PLL_PFD3_GATE_MASK; valid = SCG_PLL_PFD3_VALID_MASK; mask = SCG_PLL_PFD3_FRAC_MASK; shift = SCG_PLL_PFD3_FRAC_SHIFT; break; default: return 0; } reg = readl(&scg1_regs->spllpfd); if (reg & gate || !(reg & valid)) return 0; clk_debug("scg_spll_pfd_get_rate reg 0x%x\n", reg); val = (reg & mask) >> shift; rate = decode_pll(PLL_A7_SPLL); rate = rate / val * 18; clk_debug("scg_spll_pfd_get_rate rate %u\n", rate); return rate; } static u32 scg_apll_get_rate(void) { u32 reg, val, rate; reg = readl(&scg1_regs->apllcfg); val = (reg & SCG_PLL_CFG_PLLSEL_MASK) >> SCG_PLL_CFG_PLLSEL_SHIFT; if (!val) { /* APLL clock after two dividers */ rate = decode_pll(PLL_A7_APLL); val = (reg & SCG_PLL_CFG_POSTDIV1_MASK) >> SCG_PLL_CFG_POSTDIV1_SHIFT; rate = rate / (val + 1); val = (reg & SCG_PLL_CFG_POSTDIV2_MASK) >> SCG_PLL_CFG_POSTDIV2_SHIFT; rate = rate / (val + 1); } else { /* APLL PFD clock */ val = (reg & SCG_PLL_CFG_PFDSEL_MASK) >> SCG_PLL_CFG_PFDSEL_SHIFT; rate = scg_apll_pfd_get_rate(SCG_APLL_PFD0_CLK + val); } return rate; } static u32 scg_spll_get_rate(void) { u32 reg, val, rate; reg = readl(&scg1_regs->spllcfg); val = (reg & SCG_PLL_CFG_PLLSEL_MASK) >> SCG_PLL_CFG_PLLSEL_SHIFT; clk_debug("scg_spll_get_rate reg 0x%x\n", reg); if (!val) { /* APLL clock after two dividers */ rate = decode_pll(PLL_A7_SPLL); val = (reg & SCG_PLL_CFG_POSTDIV1_MASK) >> SCG_PLL_CFG_POSTDIV1_SHIFT; rate = rate / (val + 1); val = (reg & SCG_PLL_CFG_POSTDIV2_MASK) >> SCG_PLL_CFG_POSTDIV2_SHIFT; rate = rate / (val + 1); clk_debug("scg_spll_get_rate SPLL %u\n", rate); } else { /* APLL PFD clock */ val = (reg & SCG_PLL_CFG_PFDSEL_MASK) >> SCG_PLL_CFG_PFDSEL_SHIFT; rate = scg_spll_pfd_get_rate(SCG_SPLL_PFD0_CLK + val); clk_debug("scg_spll_get_rate PFD %u\n", rate); } return rate; } static u32 scg_ddr_get_rate(void) { u32 reg, val, rate, div; reg = readl(&scg1_regs->ddrccr); val = (reg & SCG_DDRCCR_DDRCS_MASK) >> SCG_DDRCCR_DDRCS_SHIFT; div = (reg & SCG_DDRCCR_DDRDIV_MASK) >> SCG_DDRCCR_DDRDIV_SHIFT; if (!div) return 0; if (!val) { reg = readl(&scg1_regs->apllcfg); val = (reg & SCG_PLL_CFG_PFDSEL_MASK) >> SCG_PLL_CFG_PFDSEL_SHIFT; rate = scg_apll_pfd_get_rate(SCG_APLL_PFD0_CLK + val); } else { rate = decode_pll(PLL_USB); } rate = rate / (1 << (div - 1)); return rate; } static u32 scg_nic_get_rate(enum scg_clk clk) { u32 reg, val, rate; u32 shift, mask; reg = readl(&scg1_regs->niccsr); val = (reg & SCG_NICCSR_NICCS_MASK) >> SCG_NICCSR_NICCS_SHIFT; clk_debug("scg_nic_get_rate niccsr 0x%x\n", reg); if (!val) rate = scg_src_get_rate(SCG_FIRC_CLK); else rate = scg_ddr_get_rate(); clk_debug("scg_nic_get_rate parent rate %u\n", rate); val = (reg & SCG_NICCSR_NIC0DIV_MASK) >> SCG_NICCSR_NIC0DIV_SHIFT; rate = rate / (val + 1); clk_debug("scg_nic_get_rate NIC0 rate %u\n", rate); switch (clk) { case SCG_NIC0_CLK: return rate; case SCG_GPU_CLK: mask = SCG_NICCSR_GPUDIV_MASK; shift = SCG_NICCSR_GPUDIV_SHIFT; break; case SCG_NIC1_EXT_CLK: case SCG_NIC1_BUS_CLK: case SCG_NIC1_CLK: mask = SCG_NICCSR_NIC1DIV_MASK; shift = SCG_NICCSR_NIC1DIV_SHIFT; break; default: return 0; } val = (reg & mask) >> shift; rate = rate / (val + 1); clk_debug("scg_nic_get_rate NIC1 rate %u\n", rate); switch (clk) { case SCG_GPU_CLK: case SCG_NIC1_CLK: return rate; case SCG_NIC1_EXT_CLK: mask = SCG_NICCSR_NIC1EXTDIV_MASK; shift = SCG_NICCSR_NIC1EXTDIV_SHIFT; break; case SCG_NIC1_BUS_CLK: mask = SCG_NICCSR_NIC1BUSDIV_MASK; shift = SCG_NICCSR_NIC1BUSDIV_SHIFT; break; default: return 0; } val = (reg & mask) >> shift; rate = rate / (val + 1); clk_debug("scg_nic_get_rate NIC1 bus rate %u\n", rate); return rate; } static enum scg_clk scg_scs_array[4] = { SCG_SOSC_CLK, SCG_SIRC_CLK, SCG_FIRC_CLK, SCG_ROSC_CLK, }; static u32 scg_sys_get_rate(enum scg_clk clk) { u32 reg, val, rate; if (clk != SCG_CORE_CLK && clk != SCG_BUS_CLK) return 0; reg = readl(&scg1_regs->csr); val = (reg & SCG_CCR_SCS_MASK) >> SCG_CCR_SCS_SHIFT; clk_debug("scg_sys_get_rate reg 0x%x\n", reg); switch (val) { case SCG_SCS_SYS_OSC: case SCG_SCS_SLOW_IRC: case SCG_SCS_FAST_IRC: case SCG_SCS_RTC_OSC: rate = scg_src_get_rate(scg_scs_array[val]); break; case 5: rate = scg_apll_get_rate(); break; case 6: rate = scg_spll_get_rate(); break; default: return 0; } clk_debug("scg_sys_get_rate parent rate %u\n", rate); val = (reg & SCG_CCR_DIVCORE_MASK) >> SCG_CCR_DIVCORE_SHIFT; rate = rate / (val + 1); if (clk == SCG_BUS_CLK) { val = (reg & SCG_CCR_DIVBUS_MASK) >> SCG_CCR_DIVBUS_SHIFT; rate = rate / (val + 1); } return rate; } u32 decode_pll(enum pll_clocks pll) { u32 reg, pre_div, infreq, mult; u32 num, denom; /* * Alought there are four choices for the bypass src, * we choose OSC_24M which is the default set in ROM. */ switch (pll) { case PLL_A7_SPLL: reg = readl(&scg1_regs->spllcsr); if (!(reg & SCG_SPLL_CSR_SPLLVLD_MASK)) return 0; reg = readl(&scg1_regs->spllcfg); pre_div = (reg & SCG_PLL_CFG_PREDIV_MASK) >> SCG_PLL_CFG_PREDIV_SHIFT; pre_div += 1; mult = (reg & SCG1_SPLL_CFG_MULT_MASK) >> SCG_PLL_CFG_MULT_SHIFT; infreq = (reg & SCG_PLL_CFG_CLKSRC_MASK) >> SCG_PLL_CFG_CLKSRC_SHIFT; if (!infreq) infreq = scg_src_get_rate(SCG_SOSC_CLK); else infreq = scg_src_get_rate(SCG_FIRC_CLK); num = readl(&scg1_regs->spllnum); denom = readl(&scg1_regs->splldenom); return (infreq / pre_div) * (mult + num / denom); case PLL_A7_APLL: reg = readl(&scg1_regs->apllcsr); if (!(reg & SCG_APLL_CSR_APLLVLD_MASK)) return 0; reg = readl(&scg1_regs->apllcfg); pre_div = (reg & SCG_PLL_CFG_PREDIV_MASK) >> SCG_PLL_CFG_PREDIV_SHIFT; pre_div += 1; mult = (reg & SCG_APLL_CFG_MULT_MASK) >> SCG_PLL_CFG_MULT_SHIFT; infreq = (reg & SCG_PLL_CFG_CLKSRC_MASK) >> SCG_PLL_CFG_CLKSRC_SHIFT; if (!infreq) infreq = scg_src_get_rate(SCG_SOSC_CLK); else infreq = scg_src_get_rate(SCG_FIRC_CLK); num = readl(&scg1_regs->apllnum); denom = readl(&scg1_regs->aplldenom); return (infreq / pre_div) * (mult + num / denom); case PLL_USB: reg = readl(&scg1_regs->upllcsr); if (!(reg & SCG_UPLL_CSR_UPLLVLD_MASK)) return 0; return 480000000u; case PLL_MIPI: return 480000000u; default: printf("Unsupported pll clocks %d\n", pll); break; } return 0; } u32 scg_clk_get_rate(enum scg_clk clk) { switch (clk) { case SCG_SIRC_DIV1_CLK: case SCG_SIRC_DIV2_CLK: case SCG_SIRC_DIV3_CLK: return scg_sircdiv_get_rate(clk); case SCG_FIRC_DIV1_CLK: case SCG_FIRC_DIV2_CLK: case SCG_FIRC_DIV3_CLK: return scg_fircdiv_get_rate(clk); case SCG_SOSC_DIV1_CLK: case SCG_SOSC_DIV2_CLK: case SCG_SOSC_DIV3_CLK: return scg_soscdiv_get_rate(clk); case SCG_CORE_CLK: case SCG_BUS_CLK: return scg_sys_get_rate(clk); case SCG_SPLL_PFD0_CLK: case SCG_SPLL_PFD1_CLK: case SCG_SPLL_PFD2_CLK: case SCG_SPLL_PFD3_CLK: return scg_spll_pfd_get_rate(clk); case SCG_APLL_PFD0_CLK: case SCG_APLL_PFD1_CLK: case SCG_APLL_PFD2_CLK: case SCG_APLL_PFD3_CLK: return scg_apll_pfd_get_rate(clk); case SCG_DDR_CLK: return scg_ddr_get_rate(); case SCG_NIC0_CLK: case SCG_GPU_CLK: case SCG_NIC1_CLK: case SCG_NIC1_BUS_CLK: case SCG_NIC1_EXT_CLK: return scg_nic_get_rate(clk); case USB_PLL_OUT: return decode_pll(PLL_USB); case MIPI_PLL_OUT: return decode_pll(PLL_MIPI); case SCG_SOSC_CLK: case SCG_FIRC_CLK: case SCG_SIRC_CLK: case SCG_ROSC_CLK: return scg_src_get_rate(clk); default: return 0; } } int scg_enable_pll_pfd(enum scg_clk clk, u32 frac) { u32 reg; u32 shift, mask, gate, valid; u32 addr; if (frac < 12 || frac > 35) return -EINVAL; switch (clk) { case SCG_SPLL_PFD0_CLK: case SCG_APLL_PFD0_CLK: gate = SCG_PLL_PFD0_GATE_MASK; valid = SCG_PLL_PFD0_VALID_MASK; mask = SCG_PLL_PFD0_FRAC_MASK; shift = SCG_PLL_PFD0_FRAC_SHIFT; if (clk == SCG_SPLL_PFD0_CLK) addr = (u32)(&scg1_regs->spllpfd); else addr = (u32)(&scg1_regs->apllpfd); break; case SCG_SPLL_PFD1_CLK: case SCG_APLL_PFD1_CLK: gate = SCG_PLL_PFD1_GATE_MASK; valid = SCG_PLL_PFD1_VALID_MASK; mask = SCG_PLL_PFD1_FRAC_MASK; shift = SCG_PLL_PFD1_FRAC_SHIFT; if (clk == SCG_SPLL_PFD1_CLK) addr = (u32)(&scg1_regs->spllpfd); else addr = (u32)(&scg1_regs->apllpfd); break; case SCG_SPLL_PFD2_CLK: case SCG_APLL_PFD2_CLK: gate = SCG_PLL_PFD2_GATE_MASK; valid = SCG_PLL_PFD2_VALID_MASK; mask = SCG_PLL_PFD2_FRAC_MASK; shift = SCG_PLL_PFD2_FRAC_SHIFT; if (clk == SCG_SPLL_PFD2_CLK) addr = (u32)(&scg1_regs->spllpfd); else addr = (u32)(&scg1_regs->apllpfd); break; case SCG_SPLL_PFD3_CLK: case SCG_APLL_PFD3_CLK: gate = SCG_PLL_PFD3_GATE_MASK; valid = SCG_PLL_PFD3_VALID_MASK; mask = SCG_PLL_PFD3_FRAC_MASK; shift = SCG_PLL_PFD3_FRAC_SHIFT; if (clk == SCG_SPLL_PFD3_CLK) addr = (u32)(&scg1_regs->spllpfd); else addr = (u32)(&scg1_regs->apllpfd); break; default: return -EINVAL; } /* Gate the PFD */ reg = readl(addr); reg |= gate; writel(reg, addr); /* Write Frac divider */ reg &= ~mask; reg |= (frac << shift) & mask; writel(reg, addr); /* * Un-gate the PFD * (Need un-gate before checking valid, not align with RM) */ reg &= ~gate; writel(reg, addr); /* Wait for PFD clock being valid */ do { reg = readl(addr); } while (!(reg & valid)); return 0; } #define SIM_MISC_CTRL0_USB_PLL_EN_MASK (0x1 << 2) int scg_enable_usb_pll(bool usb_control) { u32 sosc_rate; s32 timeout = 1000000; u32 reg; struct usbphy_regs *usbphy = (struct usbphy_regs *)USBPHY_RBASE; sosc_rate = scg_src_get_rate(SCG_SOSC_CLK); if (!sosc_rate) return -EPERM; reg = readl(SIM0_RBASE + 0x3C); if (usb_control) reg &= ~SIM_MISC_CTRL0_USB_PLL_EN_MASK; else reg |= SIM_MISC_CTRL0_USB_PLL_EN_MASK; writel(reg, SIM0_RBASE + 0x3C); if (!(readl(&usbphy->usb1_pll_480_ctrl) & PLL_USB_LOCK_MASK)) { writel(0x1c00000, &usbphy->usb1_pll_480_ctrl_clr); switch (sosc_rate) { case 24000000: writel(0xc00000, &usbphy->usb1_pll_480_ctrl_set); break; case 30000000: writel(0x800000, &usbphy->usb1_pll_480_ctrl_set); break; case 19200000: writel(0x1400000, &usbphy->usb1_pll_480_ctrl_set); break; default: writel(0xc00000, &usbphy->usb1_pll_480_ctrl_set); break; } /* Enable the regulator first */ writel(PLL_USB_REG_ENABLE_MASK, &usbphy->usb1_pll_480_ctrl_set); /* Wait at least 15us */ udelay(15); /* Enable the power */ writel(PLL_USB_PWR_MASK, &usbphy->usb1_pll_480_ctrl_set); /* Wait lock */ while (timeout--) { if (readl(&usbphy->usb1_pll_480_ctrl) & PLL_USB_LOCK_MASK) break; } if (timeout <= 0) { /* If timeout, we power down the pll */ writel(PLL_USB_PWR_MASK, &usbphy->usb1_pll_480_ctrl_clr); return -ETIME; } } /* Clear the bypass */ writel(PLL_USB_BYPASS_MASK, &usbphy->usb1_pll_480_ctrl_clr); /* Enable the PLL clock out to USB */ writel((PLL_USB_EN_USB_CLKS_MASK | PLL_USB_ENABLE_MASK), &usbphy->usb1_pll_480_ctrl_set); if (!usb_control) { while (timeout--) { if (readl(&scg1_regs->upllcsr) & SCG_UPLL_CSR_UPLLVLD_MASK) break; } if (timeout <= 0) { reg = readl(SIM0_RBASE + 0x3C); reg &= ~SIM_MISC_CTRL0_USB_PLL_EN_MASK; writel(reg, SIM0_RBASE + 0x3C); return -ETIME; } } return 0; } /* A7 domain system clock source is SPLL */ #define SCG1_RCCR_SCS_NUM ((SCG_SCS_SYS_PLL) << SCG_CCR_SCS_SHIFT) /* A7 Core clck = SPLL PFD0 / 1 = 500MHz / 1 = 500MHz */ #define SCG1_RCCR_DIVCORE_NUM ((0x0) << SCG_CCR_DIVCORE_SHIFT) #define SCG1_RCCR_CFG_MASK (SCG_CCR_SCS_MASK | SCG_CCR_DIVBUS_MASK) /* A7 Plat clck = A7 Core Clock / 2 = 250MHz / 1 = 250MHz */ #define SCG1_RCCR_DIVBUS_NUM ((0x1) << SCG_CCR_DIVBUS_SHIFT) #define SCG1_RCCR_CFG_NUM (SCG1_RCCR_SCS_NUM | SCG1_RCCR_DIVBUS_NUM) void scg_a7_rccr_init(void) { u32 rccr_reg_val = 0; rccr_reg_val = readl(&scg1_regs->rccr); rccr_reg_val &= (~SCG1_RCCR_CFG_MASK); rccr_reg_val |= (SCG1_RCCR_CFG_NUM); writel(rccr_reg_val, &scg1_regs->rccr); } /* POSTDIV2 = 1 */ #define SCG1_SPLL_CFG_POSTDIV2_NUM ((0x0) << SCG_PLL_CFG_POSTDIV2_SHIFT) /* POSTDIV1 = 1 */ #define SCG1_SPLL_CFG_POSTDIV1_NUM ((0x0) << SCG_PLL_CFG_POSTDIV1_SHIFT) /* MULT = 22 */ #define SCG1_SPLL_CFG_MULT_NUM ((22) << SCG_PLL_CFG_MULT_SHIFT) /* PFD0 output clock selected */ #define SCG1_SPLL_CFG_PFDSEL_NUM ((0) << SCG_PLL_CFG_PFDSEL_SHIFT) /* PREDIV = 1 */ #define SCG1_SPLL_CFG_PREDIV_NUM ((0x0) << SCG_PLL_CFG_PREDIV_SHIFT) /* SPLL output clocks (including PFD outputs) selected */ #define SCG1_SPLL_CFG_BYPASS_NUM ((0x0) << SCG_PLL_CFG_BYPASS_SHIFT) /* SPLL PFD output clock selected */ #define SCG1_SPLL_CFG_PLLSEL_NUM ((0x1) << SCG_PLL_CFG_PLLSEL_SHIFT) /* Clock source is System OSC */ #define SCG1_SPLL_CFG_CLKSRC_NUM ((0x0) << SCG_PLL_CFG_CLKSRC_SHIFT) #define SCG1_SPLL_CFG_NUM_24M_OSC (SCG1_SPLL_CFG_POSTDIV2_NUM | \ SCG1_SPLL_CFG_POSTDIV1_NUM | \ (22 << SCG_PLL_CFG_MULT_SHIFT) | \ SCG1_SPLL_CFG_PFDSEL_NUM | \ SCG1_SPLL_CFG_PREDIV_NUM | \ SCG1_SPLL_CFG_BYPASS_NUM | \ SCG1_SPLL_CFG_PLLSEL_NUM | \ SCG1_SPLL_CFG_CLKSRC_NUM) /*413Mhz = A7 SPLL(528MHz) * 18/23 */ #define SCG1_SPLL_PFD0_FRAC_NUM ((23) << SCG_PLL_PFD0_FRAC_SHIFT) void scg_a7_spll_init(void) { u32 val = 0; /* Disable A7 System PLL */ val = readl(&scg1_regs->spllcsr); val &= ~SCG_SPLL_CSR_SPLLEN_MASK; writel(val, &scg1_regs->spllcsr); /* * Per block guide, * "When changing PFD values, it is recommneded PFDx clock * gets gated first by writing a value of 1 to PFDx_CLKGATE register, * then program the new PFD value, then poll the PFDx_VALID * flag to set before writing a value of 0 to PFDx_CLKGATE * to ungate the PFDx clock and allow PFDx clock to run" */ /* Gate off A7 SPLL PFD0 ~ PDF4 */ val = readl(&scg1_regs->spllpfd); val |= (SCG_PLL_PFD3_GATE_MASK | SCG_PLL_PFD2_GATE_MASK | SCG_PLL_PFD1_GATE_MASK | SCG_PLL_PFD0_GATE_MASK); writel(val, &scg1_regs->spllpfd); /* ================ A7 SPLL Configuration Start ============== */ /* Configure A7 System PLL */ writel(SCG1_SPLL_CFG_NUM_24M_OSC, &scg1_regs->spllcfg); /* Enable A7 System PLL */ val = readl(&scg1_regs->spllcsr); val |= SCG_SPLL_CSR_SPLLEN_MASK; writel(val, &scg1_regs->spllcsr); /* Wait for A7 SPLL clock ready */ while (!(readl(&scg1_regs->spllcsr) & SCG_SPLL_CSR_SPLLVLD_MASK)) ; /* Configure A7 SPLL PFD0 */ val = readl(&scg1_regs->spllpfd); val &= ~SCG_PLL_PFD0_FRAC_MASK; val |= SCG1_SPLL_PFD0_FRAC_NUM; writel(val, &scg1_regs->spllpfd); /* Un-gate A7 SPLL PFD0 */ val = readl(&scg1_regs->spllpfd); val &= ~SCG_PLL_PFD0_GATE_MASK; writel(val, &scg1_regs->spllpfd); /* Wait for A7 SPLL PFD0 clock being valid */ while (!(readl(&scg1_regs->spllpfd) & SCG_PLL_PFD0_VALID_MASK)) ; /* ================ A7 SPLL Configuration End ============== */ } /* DDR clock source is APLL PFD0 (396MHz) */ #define SCG1_DDRCCR_DDRCS_NUM ((0x0) << SCG_DDRCCR_DDRCS_SHIFT) /* DDR clock = APLL PFD0 / 1 = 396MHz / 1 = 396MHz */ #define SCG1_DDRCCR_DDRDIV_NUM ((0x1) << SCG_DDRCCR_DDRDIV_SHIFT) /* DDR clock = APLL PFD0 / 2 = 396MHz / 2 = 198MHz */ #define SCG1_DDRCCR_DDRDIV_LF_NUM ((0x2) << SCG_DDRCCR_DDRDIV_SHIFT) #define SCG1_DDRCCR_CFG_NUM (SCG1_DDRCCR_DDRCS_NUM | \ SCG1_DDRCCR_DDRDIV_NUM) #define SCG1_DDRCCR_CFG_LF_NUM (SCG1_DDRCCR_DDRCS_NUM | \ SCG1_DDRCCR_DDRDIV_LF_NUM) void scg_a7_ddrclk_init(void) { writel(SCG1_DDRCCR_CFG_NUM, &scg1_regs->ddrccr); } /* SCG1(A7) APLLCFG configurations */ /* divide by 1 <<28 */ #define SCG1_APLL_CFG_POSTDIV2_NUM ((0x0) << SCG_PLL_CFG_POSTDIV2_SHIFT) /* divide by 1 <<24 */ #define SCG1_APLL_CFG_POSTDIV1_NUM ((0x0) << SCG_PLL_CFG_POSTDIV1_SHIFT) /* MULT is 22 <<16 */ #define SCG1_APLL_CFG_MULT_NUM ((22) << SCG_PLL_CFG_MULT_SHIFT) /* PFD0 output clock selected <<14 */ #define SCG1_APLL_CFG_PFDSEL_NUM ((0) << SCG_PLL_CFG_PFDSEL_SHIFT) /* PREDIV = 1 <<8 */ #define SCG1_APLL_CFG_PREDIV_NUM ((0x0) << SCG_PLL_CFG_PREDIV_SHIFT) /* APLL output clocks (including PFD outputs) selected <<2 */ #define SCG1_APLL_CFG_BYPASS_NUM ((0x0) << SCG_PLL_CFG_BYPASS_SHIFT) /* APLL PFD output clock selected <<1 */ #define SCG1_APLL_CFG_PLLSEL_NUM ((0x0) << SCG_PLL_CFG_PLLSEL_SHIFT) /* Clock source is System OSC <<0 */ #define SCG1_APLL_CFG_CLKSRC_NUM ((0x0) << SCG_PLL_CFG_CLKSRC_SHIFT) /* * A7 APLL = 24MHz / 1 * 22 / 1 / 1 = 528MHz, * system PLL is sourced from APLL, * APLL clock source is system OSC (24MHz) */ #define SCG1_APLL_CFG_NUM_24M_OSC (SCG1_APLL_CFG_POSTDIV2_NUM | \ SCG1_APLL_CFG_POSTDIV1_NUM | \ (22 << SCG_PLL_CFG_MULT_SHIFT) | \ SCG1_APLL_CFG_PFDSEL_NUM | \ SCG1_APLL_CFG_PREDIV_NUM | \ SCG1_APLL_CFG_BYPASS_NUM | \ SCG1_APLL_CFG_PLLSEL_NUM | \ SCG1_APLL_CFG_CLKSRC_NUM) /* PFD0 Freq = A7 APLL(528MHz) * 18 / 27 = 352MHz */ #define SCG1_APLL_PFD0_FRAC_NUM (27) void scg_a7_apll_init(void) { u32 val = 0; /* Disable A7 Auxiliary PLL */ val = readl(&scg1_regs->apllcsr); val &= ~SCG_APLL_CSR_APLLEN_MASK; writel(val, &scg1_regs->apllcsr); /* Gate off A7 APLL PFD0 ~ PDF4 */ val = readl(&scg1_regs->apllpfd); val |= 0x80808080; writel(val, &scg1_regs->apllpfd); /* ================ A7 APLL Configuration Start ============== */ /* Configure A7 Auxiliary PLL */ writel(SCG1_APLL_CFG_NUM_24M_OSC, &scg1_regs->apllcfg); /* Enable A7 Auxiliary PLL */ val = readl(&scg1_regs->apllcsr); val |= SCG_APLL_CSR_APLLEN_MASK; writel(val, &scg1_regs->apllcsr); /* Wait for A7 APLL clock ready */ while (!(readl(&scg1_regs->apllcsr) & SCG_APLL_CSR_APLLVLD_MASK)) ; /* Configure A7 APLL PFD0 */ val = readl(&scg1_regs->apllpfd); val &= ~SCG_PLL_PFD0_FRAC_MASK; val |= SCG1_APLL_PFD0_FRAC_NUM; writel(val, &scg1_regs->apllpfd); /* Un-gate A7 APLL PFD0 */ val = readl(&scg1_regs->apllpfd); val &= ~SCG_PLL_PFD0_GATE_MASK; writel(val, &scg1_regs->apllpfd); /* Wait for A7 APLL PFD0 clock being valid */ while (!(readl(&scg1_regs->apllpfd) & SCG_PLL_PFD0_VALID_MASK)) ; } /* SCG1(A7) FIRC DIV configurations */ /* Disable FIRC DIV3 */ #define SCG1_FIRCDIV_DIV3_NUM ((0x0) << SCG_FIRCDIV_DIV3_SHIFT) /* FIRC DIV2 = 48MHz / 1 = 48MHz */ #define SCG1_FIRCDIV_DIV2_NUM ((0x1) << SCG_FIRCDIV_DIV2_SHIFT) /* Disable FIRC DIV1 */ #define SCG1_FIRCDIV_DIV1_NUM ((0x0) << SCG_FIRCDIV_DIV1_SHIFT) void scg_a7_firc_init(void) { /* Wait for FIRC clock ready */ while (!(readl(&scg1_regs->firccsr) & SCG_FIRC_CSR_FIRCVLD_MASK)) ; /* Configure A7 FIRC DIV1 ~ DIV3 */ writel((SCG1_FIRCDIV_DIV3_NUM | SCG1_FIRCDIV_DIV2_NUM | SCG1_FIRCDIV_DIV1_NUM), &scg1_regs->fircdiv); } /* SCG1(A7) NICCCR configurations */ /* NIC clock source is DDR clock (396/198MHz) */ #define SCG1_NICCCR_NICCS_NUM ((0x1) << SCG_NICCCR_NICCS_SHIFT) /* NIC0 clock = DDR Clock / 2 = 396MHz / 2 = 198MHz */ #define SCG1_NICCCR_NIC0_DIV_NUM ((0x1) << SCG_NICCCR_NIC0_DIV_SHIFT) /* NIC0 clock = DDR Clock / 1 = 198MHz / 1 = 198MHz */ #define SCG1_NICCCR_NIC0_DIV_LF_NUM ((0x0) << SCG_NICCCR_NIC0_DIV_SHIFT) /* NIC1 clock = NIC0 Clock / 1 = 198MHz / 2 = 198MHz */ #define SCG1_NICCCR_NIC1_DIV_NUM ((0x0) << SCG_NICCCR_NIC1_DIV_SHIFT) /* NIC1 bus clock = NIC1 Clock / 3 = 198MHz / 3 = 66MHz */ #define SCG1_NICCCR_NIC1_DIVBUS_NUM ((0x2) << SCG_NICCCR_NIC1_DIVBUS_SHIFT) #define SCG1_NICCCR_CFG_NUM (SCG1_NICCCR_NICCS_NUM | \ SCG1_NICCCR_NIC0_DIV_NUM | \ SCG1_NICCCR_NIC1_DIV_NUM | \ SCG1_NICCCR_NIC1_DIVBUS_NUM) void scg_a7_nicclk_init(void) { writel(SCG1_NICCCR_CFG_NUM, &scg1_regs->nicccr); } /* SCG1(A7) FIRC DIV configurations */ /* Enable FIRC DIV3 */ #define SCG1_SOSCDIV_DIV3_NUM ((0x1) << SCG_SOSCDIV_DIV3_SHIFT) /* FIRC DIV2 = 48MHz / 1 = 48MHz */ #define SCG1_SOSCDIV_DIV2_NUM ((0x1) << SCG_SOSCDIV_DIV2_SHIFT) /* Enable FIRC DIV1 */ #define SCG1_SOSCDIV_DIV1_NUM ((0x1) << SCG_SOSCDIV_DIV1_SHIFT) void scg_a7_soscdiv_init(void) { /* Wait for FIRC clock ready */ while (!(readl(&scg1_regs->sosccsr) & SCG_SOSC_CSR_SOSCVLD_MASK)) ; /* Configure A7 FIRC DIV1 ~ DIV3 */ writel((SCG1_SOSCDIV_DIV3_NUM | SCG1_SOSCDIV_DIV2_NUM | SCG1_SOSCDIV_DIV1_NUM), &scg1_regs->soscdiv); } void scg_a7_sys_clk_sel(enum scg_sys_src clk) { u32 rccr_reg_val = 0; clk_debug("%s: system clock selected as %s\n", "[SCG]", clk == SCG_SCS_SYS_OSC ? "SYS_OSC" : clk == SCG_SCS_SLOW_IRC ? "SLOW_IRC" : clk == SCG_SCS_FAST_IRC ? "FAST_IRC" : clk == SCG_SCS_RTC_OSC ? "RTC_OSC" : clk == SCG_SCS_AUX_PLL ? "AUX_PLL" : clk == SCG_SCS_SYS_PLL ? "SYS_PLL" : clk == SCG_SCS_USBPHY_PLL ? "USBPHY_PLL" : "Invalid source" ); rccr_reg_val = readl(&scg1_regs->rccr); rccr_reg_val &= ~SCG_CCR_SCS_MASK; rccr_reg_val |= (clk << SCG_CCR_SCS_SHIFT); writel(rccr_reg_val, &scg1_regs->rccr); } void scg_a7_info(void) { debug("SCG Version: 0x%x\n", readl(&scg1_regs->verid)); debug("SCG Parameter: 0x%x\n", readl(&scg1_regs->param)); debug("SCG RCCR Value: 0x%x\n", readl(&scg1_regs->rccr)); debug("SCG Clock Status: 0x%x\n", readl(&scg1_regs->csr)); }