net: Adds Fast Ethernet Controller driver for Armada100

This patch adds support for Fast Ethernet Controller driver for
Armada100 series.

Signed-off-by: Ajay Bhargav <ajay.bhargav@einfochips.com>
Signed-off-by: Prafulla Wadaskar <prafulla@marvell.com>
This commit is contained in:
Ajay Bhargav 2011-09-13 22:21:58 +05:30 committed by Albert ARIBAUD
parent ea3cd47af4
commit 79788bb19a
5 changed files with 971 additions and 0 deletions

View File

@ -43,6 +43,7 @@
/* Register Base Addresses */
#define ARMD1_DRAM_BASE 0xB0000000
#define ARMD1_FEC_BASE 0xC0800000
#define ARMD1_TIMER_BASE 0xD4014000
#define ARMD1_APBC1_BASE 0xD4015000
#define ARMD1_APBC2_BASE 0xD4015800

View File

@ -28,6 +28,7 @@ LIB := $(obj)libnet.o
COBJS-$(CONFIG_DRIVER_3C589) += 3c589.o
COBJS-$(CONFIG_PPC4xx_EMAC) += 4xx_enet.o
COBJS-$(CONFIG_ALTERA_TSE) += altera_tse.o
COBJS-$(CONFIG_ARMADA100_FEC) += armada100_fec.o
COBJS-$(CONFIG_DRIVER_AT91EMAC) += at91_emac.o
COBJS-$(CONFIG_DRIVER_AX88180) += ax88180.o
COBJS-$(CONFIG_BCM570x) += bcm570x.o

736
drivers/net/armada100_fec.c Normal file
View File

@ -0,0 +1,736 @@
/*
* (C) Copyright 2011
* eInfochips Ltd. <www.einfochips.com>
* Written-by: Ajay Bhargav <ajay.bhargav@einfochips.com>
*
* (C) Copyright 2010
* Marvell Semiconductor <www.marvell.com>
* Contributor: Mahavir Jain <mjain@marvell.com>
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301 USA
*/
#include <common.h>
#include <net.h>
#include <malloc.h>
#include <miiphy.h>
#include <netdev.h>
#include <asm/types.h>
#include <asm/byteorder.h>
#include <linux/err.h>
#include <linux/mii.h>
#include <asm/io.h>
#include <asm/arch/armada100.h>
#include "armada100_fec.h"
#define PHY_ADR_REQ 0xFF /* Magic number to read/write PHY address */
#ifdef DEBUG
static int eth_dump_regs(struct eth_device *dev)
{
struct armdfec_device *darmdfec = to_darmdfec(dev);
struct armdfec_reg *regs = darmdfec->regs;
unsigned int i = 0;
printf("\noffset: phy_adr, value: 0x%x\n", readl(&regs->phyadr));
printf("offset: smi, value: 0x%x\n", readl(&regs->smi));
for (i = 0x400; i <= 0x4e4; i += 4)
printf("offset: 0x%x, value: 0x%x\n",
i, readl(ARMD1_FEC_BASE + i));
return 0;
}
#endif
static int armdfec_phy_timeout(u32 *reg, u32 flag, int cond)
{
u32 timeout = PHY_WAIT_ITERATIONS;
u32 reg_val;
while (--timeout) {
reg_val = readl(reg);
if (cond && (reg_val & flag))
break;
else if (!cond && !(reg_val & flag))
break;
udelay(PHY_WAIT_MICRO_SECONDS);
}
return !timeout;
}
static int smi_reg_read(const char *devname, u8 phy_addr, u8 phy_reg,
u16 *value)
{
struct eth_device *dev = eth_get_dev_by_name(devname);
struct armdfec_device *darmdfec = to_darmdfec(dev);
struct armdfec_reg *regs = darmdfec->regs;
u32 val;
if (phy_addr == PHY_ADR_REQ && phy_reg == PHY_ADR_REQ) {
val = readl(&regs->phyadr);
*value = val & 0x1f;
return 0;
}
/* check parameters */
if (phy_addr > PHY_MASK) {
printf("ARMD100 FEC: (%s) Invalid phy address: 0x%X\n",
__func__, phy_addr);
return -EINVAL;
}
if (phy_reg > PHY_MASK) {
printf("ARMD100 FEC: (%s) Invalid register offset: 0x%X\n",
__func__, phy_reg);
return -EINVAL;
}
/* wait for the SMI register to become available */
if (armdfec_phy_timeout(&regs->smi, SMI_BUSY, FALSE)) {
printf("ARMD100 FEC: (%s) PHY busy timeout\n", __func__);
return -1;
}
writel((phy_addr << 16) | (phy_reg << 21) | SMI_OP_R, &regs->smi);
/* now wait for the data to be valid */
if (armdfec_phy_timeout(&regs->smi, SMI_R_VALID, TRUE)) {
val = readl(&regs->smi);
printf("ARMD100 FEC: (%s) PHY Read timeout, val=0x%x\n",
__func__, val);
return -1;
}
val = readl(&regs->smi);
*value = val & 0xffff;
return 0;
}
static int smi_reg_write(const char *devname,
u8 phy_addr, u8 phy_reg, u16 value)
{
struct eth_device *dev = eth_get_dev_by_name(devname);
struct armdfec_device *darmdfec = to_darmdfec(dev);
struct armdfec_reg *regs = darmdfec->regs;
if (phy_addr == PHY_ADR_REQ && phy_reg == PHY_ADR_REQ) {
clrsetbits_le32(&regs->phyadr, 0x1f, value & 0x1f);
return 0;
}
/* check parameters */
if (phy_addr > PHY_MASK) {
printf("ARMD100 FEC: (%s) Invalid phy address\n", __func__);
return -EINVAL;
}
if (phy_reg > PHY_MASK) {
printf("ARMD100 FEC: (%s) Invalid register offset\n", __func__);
return -EINVAL;
}
/* wait for the SMI register to become available */
if (armdfec_phy_timeout(&regs->smi, SMI_BUSY, FALSE)) {
printf("ARMD100 FEC: (%s) PHY busy timeout\n", __func__);
return -1;
}
writel((phy_addr << 16) | (phy_reg << 21) | SMI_OP_W | (value & 0xffff),
&regs->smi);
return 0;
}
/*
* Abort any transmit and receive operations and put DMA
* in idle state. AT and AR bits are cleared upon entering
* in IDLE state. So poll those bits to verify operation.
*/
static void abortdma(struct eth_device *dev)
{
struct armdfec_device *darmdfec = to_darmdfec(dev);
struct armdfec_reg *regs = darmdfec->regs;
int delay;
int maxretries = 40;
u32 tmp;
while (--maxretries) {
writel(SDMA_CMD_AR | SDMA_CMD_AT, &regs->sdma_cmd);
udelay(100);
delay = 10;
while (--delay) {
tmp = readl(&regs->sdma_cmd);
if (!(tmp & (SDMA_CMD_AR | SDMA_CMD_AT)))
break;
udelay(10);
}
if (delay)
break;
}
if (!maxretries)
printf("ARMD100 FEC: (%s) DMA Stuck\n", __func__);
}
static inline u32 nibble_swapping_32_bit(u32 x)
{
return ((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4);
}
static inline u32 nibble_swapping_16_bit(u32 x)
{
return ((x & 0x0000f0f0) >> 4) | ((x & 0x00000f0f) << 4);
}
static inline u32 flip_4_bits(u32 x)
{
return ((x & 0x01) << 3) | ((x & 0x002) << 1)
| ((x & 0x04) >> 1) | ((x & 0x008) >> 3);
}
/*
* This function will calculate the hash function of the address.
* depends on the hash mode and hash size.
* Inputs
* mach - the 2 most significant bytes of the MAC address.
* macl - the 4 least significant bytes of the MAC address.
* Outputs
* return the calculated entry.
*/
static u32 hash_function(u32 mach, u32 macl)
{
u32 hashresult;
u32 addrh;
u32 addrl;
u32 addr0;
u32 addr1;
u32 addr2;
u32 addr3;
u32 addrhswapped;
u32 addrlswapped;
addrh = nibble_swapping_16_bit(mach);
addrl = nibble_swapping_32_bit(macl);
addrhswapped = flip_4_bits(addrh & 0xf)
+ ((flip_4_bits((addrh >> 4) & 0xf)) << 4)
+ ((flip_4_bits((addrh >> 8) & 0xf)) << 8)
+ ((flip_4_bits((addrh >> 12) & 0xf)) << 12);
addrlswapped = flip_4_bits(addrl & 0xf)
+ ((flip_4_bits((addrl >> 4) & 0xf)) << 4)
+ ((flip_4_bits((addrl >> 8) & 0xf)) << 8)
+ ((flip_4_bits((addrl >> 12) & 0xf)) << 12)
+ ((flip_4_bits((addrl >> 16) & 0xf)) << 16)
+ ((flip_4_bits((addrl >> 20) & 0xf)) << 20)
+ ((flip_4_bits((addrl >> 24) & 0xf)) << 24)
+ ((flip_4_bits((addrl >> 28) & 0xf)) << 28);
addrh = addrhswapped;
addrl = addrlswapped;
addr0 = (addrl >> 2) & 0x03f;
addr1 = (addrl & 0x003) | (((addrl >> 8) & 0x7f) << 2);
addr2 = (addrl >> 15) & 0x1ff;
addr3 = ((addrl >> 24) & 0x0ff) | ((addrh & 1) << 8);
hashresult = (addr0 << 9) | (addr1 ^ addr2 ^ addr3);
hashresult = hashresult & 0x07ff;
return hashresult;
}
/*
* This function will add an entry to the address table.
* depends on the hash mode and hash size that was initialized.
* Inputs
* mach - the 2 most significant bytes of the MAC address.
* macl - the 4 least significant bytes of the MAC address.
* skip - if 1, skip this address.
* rd - the RD field in the address table.
* Outputs
* address table entry is added.
* 0 if success.
* -ENOSPC if table full
*/
static int add_del_hash_entry(struct armdfec_device *darmdfec, u32 mach,
u32 macl, u32 rd, u32 skip, int del)
{
struct addr_table_entry_t *entry, *start;
u32 newhi;
u32 newlo;
u32 i;
newlo = (((mach >> 4) & 0xf) << 15)
| (((mach >> 0) & 0xf) << 11)
| (((mach >> 12) & 0xf) << 7)
| (((mach >> 8) & 0xf) << 3)
| (((macl >> 20) & 0x1) << 31)
| (((macl >> 16) & 0xf) << 27)
| (((macl >> 28) & 0xf) << 23)
| (((macl >> 24) & 0xf) << 19)
| (skip << HTESKIP) | (rd << HTERDBIT)
| HTEVALID;
newhi = (((macl >> 4) & 0xf) << 15)
| (((macl >> 0) & 0xf) << 11)
| (((macl >> 12) & 0xf) << 7)
| (((macl >> 8) & 0xf) << 3)
| (((macl >> 21) & 0x7) << 0);
/*
* Pick the appropriate table, start scanning for free/reusable
* entries at the index obtained by hashing the specified MAC address
*/
start = (struct addr_table_entry_t *)(darmdfec->htpr);
entry = start + hash_function(mach, macl);
for (i = 0; i < HOP_NUMBER; i++) {
if (!(entry->lo & HTEVALID)) {
break;
} else {
/* if same address put in same position */
if (((entry->lo & 0xfffffff8) == (newlo & 0xfffffff8))
&& (entry->hi == newhi))
break;
}
if (entry == start + 0x7ff)
entry = start;
else
entry++;
}
if (((entry->lo & 0xfffffff8) != (newlo & 0xfffffff8)) &&
(entry->hi != newhi) && del)
return 0;
if (i == HOP_NUMBER) {
if (!del) {
printf("ARMD100 FEC: (%s) table section is full\n",
__func__);
return -ENOSPC;
} else {
return 0;
}
}
/*
* Update the selected entry
*/
if (del) {
entry->hi = 0;
entry->lo = 0;
} else {
entry->hi = newhi;
entry->lo = newlo;
}
return 0;
}
/*
* Create an addressTable entry from MAC address info
* found in the specifed net_device struct
*
* Input : pointer to ethernet interface network device structure
* Output : N/A
*/
static void update_hash_table_mac_address(struct armdfec_device *darmdfec,
u8 *oaddr, u8 *addr)
{
u32 mach;
u32 macl;
/* Delete old entry */
if (oaddr) {
mach = (oaddr[0] << 8) | oaddr[1];
macl = (oaddr[2] << 24) | (oaddr[3] << 16) |
(oaddr[4] << 8) | oaddr[5];
add_del_hash_entry(darmdfec, mach, macl, 1, 0, HASH_DELETE);
}
/* Add new entry */
mach = (addr[0] << 8) | addr[1];
macl = (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) | addr[5];
add_del_hash_entry(darmdfec, mach, macl, 1, 0, HASH_ADD);
}
/* Address Table Initialization */
static void init_hashtable(struct eth_device *dev)
{
struct armdfec_device *darmdfec = to_darmdfec(dev);
struct armdfec_reg *regs = darmdfec->regs;
memset(darmdfec->htpr, 0, HASH_ADDR_TABLE_SIZE);
writel((u32)darmdfec->htpr, &regs->htpr);
}
/*
* This detects PHY chip from address 0-31 by reading PHY status
* registers. PHY chip can be connected at any of this address.
*/
static int ethernet_phy_detect(struct eth_device *dev)
{
u32 val;
u16 tmp, mii_status;
u8 addr;
for (addr = 0; addr < 32; addr++) {
if (miiphy_read(dev->name, addr, MII_BMSR, &mii_status) != 0)
/* try next phy */
continue;
/* invalid MII status. More validation required here... */
if (mii_status == 0 || mii_status == 0xffff)
/* try next phy */
continue;
if (miiphy_read(dev->name, addr, MII_PHYSID1, &tmp) != 0)
/* try next phy */
continue;
val = tmp << 16;
if (miiphy_read(dev->name, addr, MII_PHYSID2, &tmp) != 0)
/* try next phy */
continue;
val |= tmp;
if ((val & 0xfffffff0) != 0)
return addr;
}
return -1;
}
static void armdfec_init_rx_desc_ring(struct armdfec_device *darmdfec)
{
struct rx_desc *p_rx_desc;
int i;
/* initialize the Rx descriptors ring */
p_rx_desc = darmdfec->p_rxdesc;
for (i = 0; i < RINGSZ; i++) {
p_rx_desc->cmd_sts = BUF_OWNED_BY_DMA | RX_EN_INT;
p_rx_desc->buf_size = PKTSIZE_ALIGN;
p_rx_desc->byte_cnt = 0;
p_rx_desc->buf_ptr = darmdfec->p_rxbuf + i * PKTSIZE_ALIGN;
if (i == (RINGSZ - 1)) {
p_rx_desc->nxtdesc_p = darmdfec->p_rxdesc;
} else {
p_rx_desc->nxtdesc_p = (struct rx_desc *)
((u32)p_rx_desc + ARMDFEC_RXQ_DESC_ALIGNED_SIZE);
p_rx_desc = p_rx_desc->nxtdesc_p;
}
}
darmdfec->p_rxdesc_curr = darmdfec->p_rxdesc;
}
static int armdfec_init(struct eth_device *dev, bd_t *bd)
{
struct armdfec_device *darmdfec = to_darmdfec(dev);
struct armdfec_reg *regs = darmdfec->regs;
int phy_adr;
armdfec_init_rx_desc_ring(darmdfec);
/* Disable interrupts */
writel(0, &regs->im);
writel(0, &regs->ic);
/* Write to ICR to clear interrupts. */
writel(0, &regs->iwc);
/*
* Abort any transmit and receive operations and put DMA
* in idle state.
*/
abortdma(dev);
/* Initialize address hash table */
init_hashtable(dev);
/* SDMA configuration */
writel(SDCR_BSZ8 | /* Burst size = 32 bytes */
SDCR_RIFB | /* Rx interrupt on frame */
SDCR_BLMT | /* Little endian transmit */
SDCR_BLMR | /* Little endian receive */
SDCR_RC_MAX_RETRANS, /* Max retransmit count */
&regs->sdma_conf);
/* Port Configuration */
writel(PCR_HS, &regs->pconf); /* Hash size is 1/2kb */
/* Set extended port configuration */
writel(PCXR_2BSM | /* Two byte suffix aligns IP hdr */
PCXR_DSCP_EN | /* Enable DSCP in IP */
PCXR_MFL_1536 | /* Set MTU = 1536 */
PCXR_FLP | /* do not force link pass */
PCXR_TX_HIGH_PRI, /* Transmit - high priority queue */
&regs->pconf_ext);
update_hash_table_mac_address(darmdfec, NULL, dev->enetaddr);
/* Update TX and RX queue descriptor register */
writel((u32)darmdfec->p_txdesc, &regs->txcdp[TXQ]);
writel((u32)darmdfec->p_rxdesc, &regs->rxfdp[RXQ]);
writel((u32)darmdfec->p_rxdesc_curr, &regs->rxcdp[RXQ]);
/* Enable Interrupts */
writel(ALL_INTS, &regs->im);
/* Enable Ethernet Port */
setbits_le32(&regs->pconf, PCR_EN);
/* Enable RX DMA engine */
setbits_le32(&regs->sdma_cmd, SDMA_CMD_ERD);
#ifdef DEBUG
eth_dump_regs(dev);
#endif
#if (defined(CONFIG_MII) || defined(CONFIG_CMD_MII))
#if defined(CONFIG_PHY_BASE_ADR)
miiphy_write(dev->name, PHY_ADR_REQ, PHY_ADR_REQ, CONFIG_PHY_BASE_ADR);
#else
/* Search phy address from range 0-31 */
phy_adr = ethernet_phy_detect(dev);
if (phy_adr < 0) {
printf("ARMD100 FEC: PHY not detected at address range 0-31\n");
return -1;
} else {
debug("ARMD100 FEC: PHY detected at addr %d\n", phy_adr);
miiphy_write(dev->name, PHY_ADR_REQ, PHY_ADR_REQ, phy_adr);
}
#endif
#if defined(CONFIG_SYS_FAULT_ECHO_LINK_DOWN)
/* Wait up to 5s for the link status */
for (i = 0; i < 5; i++) {
u16 phy_adr;
miiphy_read(dev->name, 0xFF, 0xFF, &phy_adr);
/* Return if we get link up */
if (miiphy_link(dev->name, phy_adr))
return 0;
udelay(1000000);
}
printf("ARMD100 FEC: No link on %s\n", dev->name);
return -1;
#endif
#endif
return 0;
}
static void armdfec_halt(struct eth_device *dev)
{
struct armdfec_device *darmdfec = to_darmdfec(dev);
struct armdfec_reg *regs = darmdfec->regs;
/* Stop RX DMA */
clrbits_le32(&regs->sdma_cmd, SDMA_CMD_ERD);
/*
* Abort any transmit and receive operations and put DMA
* in idle state.
*/
abortdma(dev);
/* Disable interrupts */
writel(0, &regs->im);
writel(0, &regs->ic);
writel(0, &regs->iwc);
/* Disable Port */
clrbits_le32(&regs->pconf, PCR_EN);
}
static int armdfec_send(struct eth_device *dev, volatile void *dataptr,
int datasize)
{
struct armdfec_device *darmdfec = to_darmdfec(dev);
struct armdfec_reg *regs = darmdfec->regs;
struct tx_desc *p_txdesc = darmdfec->p_txdesc;
void *p = (void *)dataptr;
int retry = PHY_WAIT_ITERATIONS * PHY_WAIT_MICRO_SECONDS;
u32 cmd_sts;
/* Copy buffer if it's misaligned */
if ((u32)dataptr & 0x07) {
if (datasize > PKTSIZE_ALIGN) {
printf("ARMD100 FEC: Non-aligned data too large (%d)\n",
datasize);
return -1;
}
memcpy(darmdfec->p_aligned_txbuf, p, datasize);
p = darmdfec->p_aligned_txbuf;
}
p_txdesc->cmd_sts = TX_ZERO_PADDING | TX_GEN_CRC;
p_txdesc->cmd_sts |= TX_FIRST_DESC | TX_LAST_DESC;
p_txdesc->cmd_sts |= BUF_OWNED_BY_DMA;
p_txdesc->cmd_sts |= TX_EN_INT;
p_txdesc->buf_ptr = p;
p_txdesc->byte_cnt = datasize;
/* Apply send command using high priority TX queue */
writel((u32)p_txdesc, &regs->txcdp[TXQ]);
writel(SDMA_CMD_TXDL | SDMA_CMD_TXDH | SDMA_CMD_ERD, &regs->sdma_cmd);
/*
* wait for packet xmit completion
*/
cmd_sts = readl(&p_txdesc->cmd_sts);
while (cmd_sts & BUF_OWNED_BY_DMA) {
/* return fail if error is detected */
if ((cmd_sts & (TX_ERROR | TX_LAST_DESC)) ==
(TX_ERROR | TX_LAST_DESC)) {
printf("ARMD100 FEC: (%s) in xmit packet\n", __func__);
return -1;
}
cmd_sts = readl(&p_txdesc->cmd_sts);
if (!(retry--)) {
printf("ARMD100 FEC: (%s) xmit packet timeout!\n",
__func__);
return -1;
}
}
return 0;
}
static int armdfec_recv(struct eth_device *dev)
{
struct armdfec_device *darmdfec = to_darmdfec(dev);
struct rx_desc *p_rxdesc_curr = darmdfec->p_rxdesc_curr;
u32 cmd_sts;
u32 timeout = 0;
/* wait untill rx packet available or timeout */
do {
if (timeout < PHY_WAIT_ITERATIONS * PHY_WAIT_MICRO_SECONDS) {
timeout++;
} else {
debug("ARMD100 FEC: %s time out...\n", __func__);
return -1;
}
} while (readl(&p_rxdesc_curr->cmd_sts) & BUF_OWNED_BY_DMA);
if (p_rxdesc_curr->byte_cnt != 0) {
debug("ARMD100 FEC: %s: Received %d byte Packet @ 0x%x"
"(cmd_sts= %08x)\n", __func__,
(u32)p_rxdesc_curr->byte_cnt,
(u32)p_rxdesc_curr->buf_ptr,
(u32)p_rxdesc_curr->cmd_sts);
}
/*
* In case received a packet without first/last bits on
* OR the error summary bit is on,
* the packets needs to be dropeed.
*/
cmd_sts = readl(&p_rxdesc_curr->cmd_sts);
if ((cmd_sts & (RX_FIRST_DESC | RX_LAST_DESC)) !=
(RX_FIRST_DESC | RX_LAST_DESC)) {
printf("ARMD100 FEC: (%s) Dropping packet spread on"
" multiple descriptors\n", __func__);
} else if (cmd_sts & RX_ERROR) {
printf("ARMD100 FEC: (%s) Dropping packet with errors\n",
__func__);
} else {
/* !!! call higher layer processing */
debug("ARMD100 FEC: (%s) Sending Received packet to"
" upper layer (NetReceive)\n", __func__);
/*
* let the upper layer handle the packet, subtract offset
* as two dummy bytes are added in received buffer see
* PORT_CONFIG_EXT register bit TWO_Byte_Stuff_Mode bit.
*/
NetReceive((p_rxdesc_curr->buf_ptr + RX_BUF_OFFSET),
(int)(p_rxdesc_curr->byte_cnt - RX_BUF_OFFSET));
}
/*
* free these descriptors and point next in the ring
*/
p_rxdesc_curr->cmd_sts = BUF_OWNED_BY_DMA | RX_EN_INT;
p_rxdesc_curr->buf_size = PKTSIZE_ALIGN;
p_rxdesc_curr->byte_cnt = 0;
writel((u32)p_rxdesc_curr->nxtdesc_p, (u32)&darmdfec->p_rxdesc_curr);
return 0;
}
int armada100_fec_register(unsigned long base_addr)
{
struct armdfec_device *darmdfec;
struct eth_device *dev;
darmdfec = malloc(sizeof(struct armdfec_device));
if (!darmdfec)
goto error;
memset(darmdfec, 0, sizeof(struct armdfec_device));
darmdfec->htpr = memalign(8, HASH_ADDR_TABLE_SIZE);
if (!darmdfec->htpr)
goto error1;
darmdfec->p_rxdesc = memalign(PKTALIGN,
ARMDFEC_RXQ_DESC_ALIGNED_SIZE * RINGSZ + 1);
if (!darmdfec->p_rxdesc)
goto error1;
darmdfec->p_rxbuf = memalign(PKTALIGN, RINGSZ * PKTSIZE_ALIGN + 1);
if (!darmdfec->p_rxbuf)
goto error1;
darmdfec->p_aligned_txbuf = memalign(8, PKTSIZE_ALIGN);
if (!darmdfec->p_aligned_txbuf)
goto error1;
darmdfec->p_txdesc = memalign(PKTALIGN, sizeof(struct tx_desc) + 1);
if (!darmdfec->p_txdesc)
goto error1;
dev = &darmdfec->dev;
/* Assign ARMADA100 Fast Ethernet Controller Base Address */
darmdfec->regs = (void *)base_addr;
/* must be less than NAMESIZE (16) */
strcpy(dev->name, "armd-fec0");
dev->init = armdfec_init;
dev->halt = armdfec_halt;
dev->send = armdfec_send;
dev->recv = armdfec_recv;
eth_register(dev);
#if defined(CONFIG_MII) || defined(CONFIG_CMD_MII)
miiphy_register(dev->name, smi_reg_read, smi_reg_write);
#endif
return 0;
error1:
free(darmdfec->p_aligned_txbuf);
free(darmdfec->p_rxbuf);
free(darmdfec->p_rxdesc);
free(darmdfec->htpr);
error:
free(darmdfec);
printf("AMD100 FEC: (%s) Failed to allocate memory\n", __func__);
return -1;
}

232
drivers/net/armada100_fec.h Normal file
View File

@ -0,0 +1,232 @@
/*
* (C) Copyright 2011
* eInfochips Ltd. <www.einfochips.com>
* Written-by: Ajay Bhargav <ajay.bhargav@einfochips.com>
*
* (C) Copyright 2010
* Marvell Semiconductor <www.marvell.com>
* Contributor: Mahavir Jain <mjain@marvell.com>
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301 USA
*/
#ifndef __ARMADA100_FEC_H__
#define __ARMADA100_FEC_H__
#ifndef TRUE
#define TRUE 1
#endif
#ifndef FALSE
#define FALSE 0
#endif
#define PORT_NUM 0x0
/* RX & TX descriptor command */
#define BUF_OWNED_BY_DMA (1<<31)
/* RX descriptor status */
#define RX_EN_INT (1<<23)
#define RX_FIRST_DESC (1<<17)
#define RX_LAST_DESC (1<<16)
#define RX_ERROR (1<<15)
/* TX descriptor command */
#define TX_EN_INT (1<<23)
#define TX_GEN_CRC (1<<22)
#define TX_ZERO_PADDING (1<<18)
#define TX_FIRST_DESC (1<<17)
#define TX_LAST_DESC (1<<16)
#define TX_ERROR (1<<15)
/* smi register */
#define SMI_BUSY (1<<28) /* 0 - Write, 1 - Read */
#define SMI_R_VALID (1<<27) /* 0 - Write, 1 - Read */
#define SMI_OP_W (0<<26) /* Write operation */
#define SMI_OP_R (1<<26) /* Read operation */
#define HASH_ADD 0
#define HASH_DELETE 1
#define HASH_ADDR_TABLE_SIZE 0x4000 /* 16K (1/2K address - PCR_HS == 1) */
#define HOP_NUMBER 12
#define PHY_WAIT_ITERATIONS 1000 /* 1000 iterations * 10uS = 10mS max */
#define PHY_WAIT_MICRO_SECONDS 10
#define ETH_HW_IP_ALIGN 2 /* hw aligns IP header */
#define ETH_EXTRA_HEADER (6+6+2+4)
/* dest+src addr+protocol id+crc */
#define MAX_PKT_SIZE 1536
/* Bit definitions of the SDMA Config Reg */
#define SDCR_BSZ_OFF 12
#define SDCR_BSZ8 (3<<SDCR_BSZ_OFF)
#define SDCR_BSZ4 (2<<SDCR_BSZ_OFF)
#define SDCR_BSZ2 (1<<SDCR_BSZ_OFF)
#define SDCR_BSZ1 (0<<SDCR_BSZ_OFF)
#define SDCR_BLMR (1<<6)
#define SDCR_BLMT (1<<7)
#define SDCR_RIFB (1<<9)
#define SDCR_RC_OFF 2
#define SDCR_RC_MAX_RETRANS (0xf << SDCR_RC_OFF)
/* SDMA_CMD */
#define SDMA_CMD_AT (1<<31)
#define SDMA_CMD_TXDL (1<<24)
#define SDMA_CMD_TXDH (1<<23)
#define SDMA_CMD_AR (1<<15)
#define SDMA_CMD_ERD (1<<7)
/* Bit definitions of the Port Config Reg */
#define PCR_HS (1<<12)
#define PCR_EN (1<<7)
#define PCR_PM (1<<0)
/* Bit definitions of the Port Config Extend Reg */
#define PCXR_2BSM (1<<28)
#define PCXR_DSCP_EN (1<<21)
#define PCXR_MFL_1518 (0<<14)
#define PCXR_MFL_1536 (1<<14)
#define PCXR_MFL_2048 (2<<14)
#define PCXR_MFL_64K (3<<14)
#define PCXR_FLP (1<<11)
#define PCXR_PRIO_TX_OFF 3
#define PCXR_TX_HIGH_PRI (7<<PCXR_PRIO_TX_OFF)
/*
* * Bit definitions of the Interrupt Cause Reg
* * and Interrupt MASK Reg is the same
* */
#define ICR_RXBUF (1<<0)
#define ICR_TXBUF_H (1<<2)
#define ICR_TXBUF_L (1<<3)
#define ICR_TXEND_H (1<<6)
#define ICR_TXEND_L (1<<7)
#define ICR_RXERR (1<<8)
#define ICR_TXERR_H (1<<10)
#define ICR_TXERR_L (1<<11)
#define ICR_TX_UDR (1<<13)
#define ICR_MII_CH (1<<28)
#define ALL_INTS (ICR_TXBUF_H | ICR_TXBUF_L | ICR_TX_UDR |\
ICR_TXERR_H | ICR_TXERR_L |\
ICR_TXEND_H | ICR_TXEND_L |\
ICR_RXBUF | ICR_RXERR | ICR_MII_CH)
#define PHY_MASK 0x0000001f
#define to_darmdfec(_kd) container_of(_kd, struct armdfec_device, dev)
/* Size of a Tx/Rx descriptor used in chain list data structure */
#define ARMDFEC_RXQ_DESC_ALIGNED_SIZE \
(((sizeof(struct rx_desc) / PKTALIGN) + 1) * PKTALIGN)
#define RX_BUF_OFFSET 0x2
#define RXQ 0x0 /* RX Queue 0 */
#define TXQ 0x1 /* TX Queue 1 */
struct addr_table_entry_t {
u32 lo;
u32 hi;
};
/* Bit fields of a Hash Table Entry */
enum hash_table_entry {
HTEVALID = 1,
HTESKIP = 2,
HTERD = 4,
HTERDBIT = 2
};
struct tx_desc {
u32 cmd_sts; /* Command/status field */
u16 reserved;
u16 byte_cnt; /* buffer byte count */
u8 *buf_ptr; /* pointer to buffer for this descriptor */
struct tx_desc *nextdesc_p; /* Pointer to next descriptor */
};
struct rx_desc {
u32 cmd_sts; /* Descriptor command status */
u16 byte_cnt; /* Descriptor buffer byte count */
u16 buf_size; /* Buffer size */
u8 *buf_ptr; /* Descriptor buffer pointer */
struct rx_desc *nxtdesc_p; /* Next descriptor pointer */
};
/*
* Armada100 Fast Ethernet controller Registers
* Refer Datasheet Appendix A.22
*/
struct armdfec_reg {
u32 phyadr; /* PHY Address */
u32 pad1[3];
u32 smi; /* SMI */
u32 pad2[0xFB];
u32 pconf; /* Port configuration */
u32 pad3;
u32 pconf_ext; /* Port configuration extend */
u32 pad4;
u32 pcmd; /* Port Command */
u32 pad5;
u32 pstatus; /* Port Status */
u32 pad6;
u32 spar; /* Serial Parameters */
u32 pad7;
u32 htpr; /* Hash table pointer */
u32 pad8;
u32 fcsal; /* Flow control source address low */
u32 pad9;
u32 fcsah; /* Flow control source address high */
u32 pad10;
u32 sdma_conf; /* SDMA configuration */
u32 pad11;
u32 sdma_cmd; /* SDMA command */
u32 pad12;
u32 ic; /* Interrupt cause */
u32 iwc; /* Interrupt write to clear */
u32 im; /* Interrupt mask */
u32 pad13;
u32 *eth_idscpp[4]; /* Eth0 IP Differentiated Services Code
Point to Priority 0 Low */
u32 eth_vlan_p; /* Eth0 VLAN Priority Tag to Priority */
u32 pad14[3];
struct rx_desc *rxfdp[4]; /* Ethernet First Rx Descriptor
Pointer */
u32 pad15[4];
struct rx_desc *rxcdp[4]; /* Ethernet Current Rx Descriptor
Pointer */
u32 pad16[0x0C];
struct tx_desc *txcdp[2]; /* Ethernet Current Tx Descriptor
Pointer */
};
struct armdfec_device {
struct eth_device dev;
struct armdfec_reg *regs;
struct tx_desc *p_txdesc;
struct rx_desc *p_rxdesc;
struct rx_desc *p_rxdesc_curr;
u8 *p_rxbuf;
u8 *p_aligned_txbuf;
u8 *htpr; /* hash pointer */
};
#endif /* __ARMADA100_FEC_H__ */

View File

@ -94,6 +94,7 @@ int smc911x_initialize(u8 dev_num, int base_addr);
int tsi108_eth_initialize(bd_t *bis);
int uec_standard_init(bd_t *bis);
int uli526x_initialize(bd_t *bis);
int armada100_fec_register(unsigned long base_addr);
int xilinx_emaclite_initialize (bd_t *bis, int base_addr);
/* Boards with PCI network controllers can call this from their board_eth_init()