aspeed: Add basic ast2500-specific drivers and configuration

Clock Driver

This driver is ast2500-specific and is not compatible with earlier
versions of this chip. The differences are not that big, but they are
in somewhat random places, so making it compatible with ast2400 is not
worth the effort at the moment.

SDRAM MC driver

The driver is very ast2500-specific and is completely incompatible
with previous versions of the chip.

The memory controller is very poorly documented by Aspeed in the
datasheet, with any mention of the whole range of registers missing. The
initialization procedure has been basically taken from Aspeed SDK, where
it is implemented in assembly. Here it is rewritten in C, with very limited
understanding of what exactly it is doing.
Reviewed-by: Simon Glass <sjg@chromium.org>
This commit is contained in:
maxims@google.com 2017-01-18 13:44:56 -08:00 committed by Tom Rini
parent 4697abea62
commit 14e4b14979
14 changed files with 1273 additions and 0 deletions

View File

@ -0,0 +1,53 @@
#include <dt-bindings/clock/ast2500-scu.h>
#include "ast2500.dtsi"
/ {
scu: clock-controller@1e6e2000 {
compatible = "aspeed,ast2500-scu";
reg = <0x1e6e2000 0x1000>;
u-boot,dm-pre-reloc;
#clock-cells = <1>;
#reset-cells = <1>;
};
sdrammc: sdrammc@1e6e0000 {
u-boot,dm-pre-reloc;
compatible = "aspeed,ast2500-sdrammc";
reg = <0x1e6e0000 0x174
0x1e6e0200 0x1d4 >;
clocks = <&scu PLL_MPLL>;
};
ahb {
u-boot,dm-pre-reloc;
apb {
u-boot,dm-pre-reloc;
timer: timer@1e782000 {
u-boot,dm-pre-reloc;
};
uart1: serial@1e783000 {
clocks = <&scu PCLK_UART1>;
};
uart2: serial@1e78d000 {
clocks = <&scu PCLK_UART2>;
};
uart3: serial@1e78e000 {
clocks = <&scu PCLK_UART3>;
};
uart4: serial@1e78f000 {
clocks = <&scu PCLK_UART4>;
};
uart5: serial@1e784000 {
clocks = <&scu PCLK_UART5>;
};
};
};
};

174
arch/arm/dts/ast2500.dtsi Normal file
View File

@ -0,0 +1,174 @@
/*
* This device tree is copied from
* https://raw.githubusercontent.com/torvalds/linux/02440622/arch/arm/boot/dts/
*/
#include "skeleton.dtsi"
/ {
model = "Aspeed BMC";
compatible = "aspeed,ast2500";
#address-cells = <1>;
#size-cells = <1>;
interrupt-parent = <&vic>;
cpus {
#address-cells = <1>;
#size-cells = <0>;
cpu@0 {
compatible = "arm,arm1176jzf-s";
device_type = "cpu";
reg = <0>;
};
};
ahb {
compatible = "simple-bus";
#address-cells = <1>;
#size-cells = <1>;
ranges;
vic: interrupt-controller@1e6c0080 {
compatible = "aspeed,ast2400-vic";
interrupt-controller;
#interrupt-cells = <1>;
valid-sources = <0xfefff7ff 0x0807ffff>;
reg = <0x1e6c0080 0x80>;
};
apb {
compatible = "simple-bus";
#address-cells = <1>;
#size-cells = <1>;
ranges;
clk_clkin: clk_clkin@1e6e2070 {
#clock-cells = <0>;
compatible = "aspeed,g5-clkin-clock";
reg = <0x1e6e2070 0x04>;
};
clk_hpll: clk_hpll@1e6e2024 {
#clock-cells = <0>;
compatible = "aspeed,g5-hpll-clock";
reg = <0x1e6e2024 0x4>;
clocks = <&clk_clkin>;
};
clk_ahb: clk_ahb@1e6e2070 {
#clock-cells = <0>;
compatible = "aspeed,g5-ahb-clock";
reg = <0x1e6e2070 0x4>;
clocks = <&clk_hpll>;
};
clk_apb: clk_apb@1e6e2008 {
#clock-cells = <0>;
compatible = "aspeed,g5-apb-clock";
reg = <0x1e6e2008 0x4>;
clocks = <&clk_hpll>;
};
clk_uart: clk_uart@1e6e2008 {
#clock-cells = <0>;
compatible = "aspeed,uart-clock";
reg = <0x1e6e202c 0x4>;
};
sram@1e720000 {
compatible = "mmio-sram";
reg = <0x1e720000 0x9000>; // 36K
};
timer: timer@1e782000 {
compatible = "aspeed,ast2400-timer";
reg = <0x1e782000 0x90>;
// The moxart_timer driver registers only one
// interrupt and assumes it's for timer 1
//interrupts = <16 17 18 35 36 37 38 39>;
interrupts = <16>;
clocks = <&clk_apb>;
};
wdt1: wdt@1e785000 {
compatible = "aspeed,wdt";
reg = <0x1e785000 0x1c>;
interrupts = <27>;
};
wdt2: wdt@1e785020 {
compatible = "aspeed,wdt";
reg = <0x1e785020 0x1c>;
interrupts = <27>;
status = "disabled";
};
wdt3: wdt@1e785040 {
compatible = "aspeed,wdt";
reg = <0x1e785074 0x1c>;
status = "disabled";
};
uart1: serial@1e783000 {
compatible = "ns16550a";
reg = <0x1e783000 0x1000>;
reg-shift = <2>;
interrupts = <9>;
clocks = <&clk_uart>;
no-loopback-test;
status = "disabled";
};
uart2: serial@1e78d000 {
compatible = "ns16550a";
reg = <0x1e78d000 0x1000>;
reg-shift = <2>;
interrupts = <32>;
clocks = <&clk_uart>;
no-loopback-test;
status = "disabled";
};
uart3: serial@1e78e000 {
compatible = "ns16550a";
reg = <0x1e78e000 0x1000>;
reg-shift = <2>;
interrupts = <33>;
clocks = <&clk_uart>;
no-loopback-test;
status = "disabled";
};
uart4: serial@1e78f000 {
compatible = "ns16550a";
reg = <0x1e78f000 0x1000>;
reg-shift = <2>;
interrupts = <34>;
clocks = <&clk_uart>;
no-loopback-test;
status = "disabled";
};
uart5: serial@1e784000 {
compatible = "ns16550a";
reg = <0x1e784000 0x1000>;
reg-shift = <2>;
interrupts = <10>;
clocks = <&clk_uart>;
current-speed = <38400>;
no-loopback-test;
status = "disabled";
};
uart6: serial@1e787000 {
compatible = "ns16550a";
reg = <0x1e787000 0x1000>;
reg-shift = <2>;
interrupts = <10>;
clocks = <&clk_uart>;
no-loopback-test;
status = "disabled";
};
};
};
};

View File

@ -0,0 +1,125 @@
/*
* Copyright (c) 2016 Google, Inc
*
* SPDX-License-Identifier: GPL-2.0+
*/
#ifndef _ASM_ARCH_SCU_AST2500_H
#define _ASM_ARCH_SCU_AST2500_H
#define SCU_UNLOCK_VALUE 0x1688a8a8
#define SCU_HWSTRAP_VGAMEM_MASK 3
#define SCU_HWSTRAP_VGAMEM_SHIFT 2
#define SCU_HWSTRAP_DDR4 (1 << 24)
#define SCU_HWSTRAP_CLKIN_25MHZ (1 << 23)
#define SCU_MPLL_DENUM_SHIFT 0
#define SCU_MPLL_DENUM_MASK 0x1f
#define SCU_MPLL_NUM_SHIFT 5
#define SCU_MPLL_NUM_MASK 0xff
#define SCU_MPLL_POST_SHIFT 13
#define SCU_MPLL_POST_MASK 0x3f
#define SCU_HPLL_DENUM_SHIFT 0
#define SCU_HPLL_DENUM_MASK 0x1f
#define SCU_HPLL_NUM_SHIFT 5
#define SCU_HPLL_NUM_MASK 0xff
#define SCU_HPLL_POST_SHIFT 13
#define SCU_HPLL_POST_MASK 0x3f
#define SCU_MISC2_UARTCLK_SHIFT 24
#define SCU_MISC_UARTCLK_DIV13 (1 << 12)
#ifndef __ASSEMBLY__
struct ast2500_clk_priv {
struct ast2500_scu *scu;
};
struct ast2500_scu {
u32 protection_key;
u32 sysreset_ctrl1;
u32 clk_sel1;
u32 clk_stop_ctrl1;
u32 freq_counter_ctrl;
u32 freq_counter_cmp;
u32 intr_ctrl;
u32 d2_pll_param;
u32 m_pll_param;
u32 h_pll_param;
u32 d_pll_param;
u32 misc_ctrl1;
u32 pci_config[3];
u32 sysreset_status;
u32 vga_handshake[2];
u32 mac_clk_delay;
u32 misc_ctrl2;
u32 vga_scratch[8];
u32 hwstrap;
u32 rng_ctrl;
u32 rng_data;
u32 rev_id;
u32 pinmux_ctrl[6];
u32 reserved0;
u32 extrst_sel;
u32 pinmux_ctrl1[4];
u32 reserved1[2];
u32 mac_clk_delay_100M;
u32 mac_clk_delay_10M;
u32 wakeup_enable;
u32 wakeup_control;
u32 reserved2[3];
u32 sysreset_ctrl2;
u32 clk_sel2;
u32 clk_stop_ctrl2;
u32 freerun_counter;
u32 freerun_counter_ext;
u32 clk_duty_meas_ctrl;
u32 clk_duty_meas_res;
u32 reserved3[4];
/* The next registers are not key-protected */
struct ast2500_cpu2 {
u32 ctrl;
u32 base_addr[9];
u32 cache_ctrl;
} cpu2;
u32 reserved4;
u32 d_pll_ext_param[3];
u32 d2_pll_ext_param[3];
u32 mh_pll_ext_param;
u32 reserved5;
u32 chip_id[2];
u32 reserved6[2];
u32 uart_clk_ctrl;
u32 reserved7[7];
u32 pcie_config;
u32 mmio_decode;
u32 reloc_ctrl_decode[2];
u32 mailbox_addr;
u32 shared_sram_decode[2];
u32 bmc_rev_id;
u32 reserved8;
u32 bmc_device_id;
u32 reserved9[13];
u32 clk_duty_sel;
};
/**
* ast_get_clk() - get a pointer to Clock Driver
*
* @devp, OUT - pointer to Clock Driver
* @return zero on success, error code (< 0) otherwise.
*/
int ast_get_clk(struct udevice **devp);
/**
* ast_get_scu() - get a pointer to SCU registers
*
* @return pointer to struct ast2500_scu on success, ERR_PTR otherwise
*/
void *ast_get_scu(void);
#endif /* __ASSEMBLY__ */
#endif /* _ASM_ARCH_SCU_AST2500_H */

View File

@ -0,0 +1,138 @@
/*
* Copyright (c) 2016 Google, Inc
*
* SPDX-License-Identifier: GPL-2.0+
*/
#ifndef _ASM_ARCH_SDRAM_AST2500_H
#define _ASM_ARCH_SDRAM_AST2500_H
#define SDRAM_UNLOCK_KEY 0xfc600309
#define SDRAM_VIDEO_UNLOCK_KEY 0x2003000f
#define SDRAM_PCR_CKE_EN (1 << 0)
#define SDRAM_PCR_AUTOPWRDN_EN (1 << 1)
#define SDRAM_PCR_CKE_DELAY_SHIFT 4
#define SDRAM_PCR_CKE_DELAY_MASK 7
#define SDRAM_PCR_RESETN_DIS (1 << 7)
#define SDRAM_PCR_ODT_EN (1 << 8)
#define SDRAM_PCR_ODT_AUTO_ON (1 << 10)
#define SDRAM_PCR_ODT_EXT_EN (1 << 11)
#define SDRAM_PCR_TCKE_PW_SHIFT 12
#define SDRAM_PCR_TCKE_PW_MASK 7
#define SDRAM_PCR_RGAP_CTRL_EN (1 << 15)
#define SDRAM_PCR_MREQI_DIS (1 << 17)
/* Fixed priority DRAM Requests mask */
#define SDRAM_REQ_VGA_HW_CURSOR (1 << 0)
#define SDRAM_REQ_VGA_TEXT_CG_FONT (1 << 1)
#define SDRAM_REQ_VGA_TEXT_ASCII (1 << 2)
#define SDRAM_REQ_VGA_CRT (1 << 3)
#define SDRAM_REQ_SOC_DC_CURSOR (1 << 4)
#define SDRAM_REQ_SOC_DC_OCD (1 << 5)
#define SDRAM_REQ_SOC_DC_CRT (1 << 6)
#define SDRAM_REQ_VIDEO_HIPRI_WRITE (1 << 7)
#define SDRAM_REQ_USB20_EHCI1 (1 << 8)
#define SDRAM_REQ_USB20_EHCI2 (1 << 9)
#define SDRAM_REQ_CPU (1 << 10)
#define SDRAM_REQ_AHB2 (1 << 11)
#define SDRAM_REQ_AHB (1 << 12)
#define SDRAM_REQ_MAC0 (1 << 13)
#define SDRAM_REQ_MAC1 (1 << 14)
#define SDRAM_REQ_PCIE (1 << 16)
#define SDRAM_REQ_XDMA (1 << 17)
#define SDRAM_REQ_ENCRYPTION (1 << 18)
#define SDRAM_REQ_VIDEO_FLAG (1 << 21)
#define SDRAM_REQ_VIDEO_LOW_PRI_WRITE (1 << 28)
#define SDRAM_REQ_2D_RW (1 << 29)
#define SDRAM_REQ_MEMCHECK (1 << 30)
#define SDRAM_ICR_RESET_ALL (1 << 31)
#define SDRAM_CONF_CAP_SHIFT 0
#define SDRAM_CONF_CAP_MASK 3
#define SDRAM_CONF_DDR4 (1 << 4)
#define SDRAM_CONF_SCRAMBLE (1 << 8)
#define SDRAM_CONF_SCRAMBLE_PAT2 (1 << 9)
#define SDRAM_CONF_CACHE_EN (1 << 10)
#define SDRAM_CONF_CACHE_INIT_EN (1 << 12)
#define SDRAM_CONF_DUALX8 (1 << 13)
#define SDRAM_CONF_CACHE_INIT_DONE (1 << 19)
#define SDRAM_CONF_CAP_128M 0
#define SDRAM_CONF_CAP_256M 1
#define SDRAM_CONF_CAP_512M 2
#define SDRAM_CONF_CAP_1024M 3
#define SDRAM_MISC_DDR4_TREFRESH (1 << 3)
#define SDRAM_PHYCTRL0_INIT (1 << 0)
#define SDRAM_PHYCTRL0_AUTO_UPDATE (1 << 1)
#define SDRAM_PHYCTRL0_NRST (1 << 2)
#define SDRAM_REFRESH_CYCLES_SHIFT 0
#define SDRAM_REFRESH_CYCLES_MASK 0xf
#define SDRAM_REFRESH_ZQCS_EN (1 << 7)
#define SDRAM_REFRESH_PERIOD_SHIFT 8
#define SDRAM_REFRESH_PERIOD_MASK 0xf
#define SDRAM_TEST_LEN_SHIFT 4
#define SDRAM_TEST_LEN_MASK 0xfffff
#define SDRAM_TEST_START_ADDR_SHIFT 24
#define SDRAM_TEST_START_ADDR_MASK 0x3f
#define SDRAM_TEST_EN (1 << 0)
#define SDRAM_TEST_MODE_SHIFT 1
#define SDRAM_TEST_MODE_MASK 3
#define SDRAM_TEST_MODE_WO 0
#define SDRAM_TEST_MODE_RB 1
#define SDRAM_TEST_MODE_RW 2
#define SDRAM_TEST_GEN_MODE_SHIFT 3
#define SDRAM_TEST_GEN_MODE_MASK 7
#define SDRAM_TEST_TWO_MODES (1 << 6)
#define SDRAM_TEST_ERRSTOP (1 << 7)
#define SDRAM_TEST_DONE (1 << 12)
#define SDRAM_TEST_FAIL (1 << 13)
#define SDRAM_AC_TRFC_SHIFT 0
#define SDRAM_AC_TRFC_MASK 0xff
#ifndef __ASSEMBLY__
struct ast2500_sdrammc_regs {
u32 protection_key;
u32 config;
u32 gm_protection_key;
u32 refresh_timing;
u32 ac_timing[3];
u32 misc_control;
u32 mr46_mode_setting;
u32 mr5_mode_setting;
u32 mode_setting_control;
u32 mr02_mode_setting;
u32 mr13_mode_setting;
u32 power_control;
u32 req_limit_mask;
u32 pri_group_setting;
u32 max_grant_len[4];
u32 intr_ctrl;
u32 ecc_range_ctrl;
u32 first_ecc_err_addr;
u32 last_ecc_err_addr;
u32 phy_ctrl[4];
u32 ecc_test_ctrl;
u32 test_addr;
u32 test_fail_dq_bit;
u32 test_init_val;
u32 phy_debug_ctrl;
u32 phy_debug_data;
u32 reserved1[30];
u32 scu_passwd;
u32 reserved2[7];
u32 scu_mpll;
u32 reserved3[19];
u32 scu_hwstrap;
};
#endif /* __ASSEMBLY__ */
#endif /* _ASM_ARCH_SDRAM_AST2500_H */

View File

@ -24,4 +24,6 @@ config WDT_NUM
The number of Watchdot Timers on a SoC.
AST2500 has three WDTsk earlier versions have two or fewer.
source "arch/arm/mach-aspeed/ast2500/Kconfig"
endif

View File

@ -5,3 +5,4 @@
#
obj-$(CONFIG_ARCH_ASPEED) += ast_wdt.o
obj-$(CONFIG_ASPEED_AST2500) += ast2500/

View File

@ -0,0 +1,14 @@
if ASPEED_AST2500
config SYS_CPU
default "arm1176"
config TARGET_EVB_AST2500
bool "Evb-AST2500"
help
Evb-AST2500 is Aspeed evaluation board for AST2500 chip.
It has 512M of RAM, 32M of SPI flash, two Ethernet ports,
4 Serial ports, 4 USB ports, VGA port, PCIe, SD card slot,
20 pin JTAG, pinouts for 14 I2Cs, 3 SPIs and eSPI, 8 PWMs.
endif

View File

@ -0,0 +1 @@
obj-y += clk_ast2500.o sdram_ast2500.o

View File

@ -0,0 +1,30 @@
/*
* Copyright (C) 2016 Google, Inc
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <dm.h>
#include <asm/arch/scu_ast2500.h>
int ast_get_clk(struct udevice **devp)
{
return uclass_get_device_by_driver(UCLASS_CLK,
DM_GET_DRIVER(aspeed_ast2500_scu), devp);
}
void *ast_get_scu(void)
{
struct ast2500_clk_priv *priv;
struct udevice *dev;
int ret;
ret = ast_get_clk(&dev);
if (ret)
return ERR_PTR(ret);
priv = dev_get_priv(dev);
return priv->scu;
}

View File

@ -0,0 +1,432 @@
/*
* Copyright (C) 2012-2020 ASPEED Technology Inc.
*
* Copyright 2016 Google, Inc
*
* SPDX-License-Identifier: GPL-2.0
*/
#include <common.h>
#include <clk.h>
#include <dm.h>
#include <errno.h>
#include <ram.h>
#include <regmap.h>
#include <asm/io.h>
#include <asm/arch/scu_ast2500.h>
#include <asm/arch/sdram_ast2500.h>
#include <asm/arch/wdt.h>
#include <linux/err.h>
#include <linux/kernel.h>
#include <dt-bindings/clock/ast2500-scu.h>
/* These configuration parameters are taken from Aspeed SDK */
#define DDR4_MR46_MODE 0x08000000
#define DDR4_MR5_MODE 0x400
#define DDR4_MR13_MODE 0x101
#define DDR4_MR02_MODE 0x410
#define DDR4_TRFC 0x45457188
#define PHY_CFG_SIZE 15
static const u32 ddr4_ac_timing[3] = {0x63604e37, 0xe97afa99, 0x00019000};
static const struct {
u32 index[PHY_CFG_SIZE];
u32 value[PHY_CFG_SIZE];
} ddr4_phy_config = {
.index = {0, 1, 3, 4, 5, 56, 57, 58, 59, 60, 61, 62, 36, 49, 50},
.value = {
0x42492aae, 0x09002000, 0x55e00b0b, 0x20000000, 0x24,
0x03002900, 0x0e0000a0, 0x000e001c, 0x35b8c106, 0x08080607,
0x9b000900, 0x0e400a00, 0x00100008, 0x3c183c3c, 0x00631e0e,
},
};
#define SDRAM_MAX_SIZE (1024 * 1024 * 1024)
#define SDRAM_MIN_SIZE (128 * 1024 * 1024)
DECLARE_GLOBAL_DATA_PTR;
/*
* Bandwidth configuration parameters for different SDRAM requests.
* These are hardcoded settings taken from Aspeed SDK.
*/
static const u32 ddr_max_grant_params[4] = {
0x88448844, 0x24422288, 0x22222222, 0x22222222
};
/*
* These registers are not documented by Aspeed at all.
* All writes and reads are taken pretty much as is from SDK.
*/
struct ast2500_ddr_phy {
u32 phy[117];
};
struct dram_info {
struct ram_info info;
struct clk ddr_clk;
struct ast2500_sdrammc_regs *regs;
struct ast2500_scu *scu;
struct ast2500_ddr_phy *phy;
ulong clock_rate;
};
static int ast2500_sdrammc_init_phy(struct ast2500_ddr_phy *phy)
{
writel(0, &phy->phy[2]);
writel(0, &phy->phy[6]);
writel(0, &phy->phy[8]);
writel(0, &phy->phy[10]);
writel(0, &phy->phy[12]);
writel(0, &phy->phy[42]);
writel(0, &phy->phy[44]);
writel(0x86000000, &phy->phy[16]);
writel(0x00008600, &phy->phy[17]);
writel(0x80000000, &phy->phy[18]);
writel(0x80808080, &phy->phy[19]);
return 0;
}
static void ast2500_ddr_phy_init_process(struct dram_info *info)
{
struct ast2500_sdrammc_regs *regs = info->regs;
writel(0, &regs->phy_ctrl[0]);
writel(0x4040, &info->phy->phy[51]);
writel(SDRAM_PHYCTRL0_NRST | SDRAM_PHYCTRL0_INIT, &regs->phy_ctrl[0]);
while ((readl(&regs->phy_ctrl[0]) & SDRAM_PHYCTRL0_INIT))
;
writel(SDRAM_PHYCTRL0_NRST | SDRAM_PHYCTRL0_AUTO_UPDATE,
&regs->phy_ctrl[0]);
}
static void ast2500_sdrammc_set_vref(struct dram_info *info, u32 vref)
{
writel(0, &info->regs->phy_ctrl[0]);
writel((vref << 8) | 0x6, &info->phy->phy[48]);
ast2500_ddr_phy_init_process(info);
}
static int ast2500_ddr_cbr_test(struct dram_info *info)
{
struct ast2500_sdrammc_regs *regs = info->regs;
int i;
const u32 test_params = SDRAM_TEST_EN
| SDRAM_TEST_ERRSTOP
| SDRAM_TEST_TWO_MODES;
int ret = 0;
writel((1 << SDRAM_REFRESH_CYCLES_SHIFT) |
(0x5c << SDRAM_REFRESH_PERIOD_SHIFT), &regs->refresh_timing);
writel((0xfff << SDRAM_TEST_LEN_SHIFT), &regs->test_addr);
writel(0xff00ff00, &regs->test_init_val);
writel(SDRAM_TEST_EN | (SDRAM_TEST_MODE_RW << SDRAM_TEST_MODE_SHIFT) |
SDRAM_TEST_ERRSTOP, &regs->ecc_test_ctrl);
while (!(readl(&regs->ecc_test_ctrl) & SDRAM_TEST_DONE))
;
if (readl(&regs->ecc_test_ctrl) & SDRAM_TEST_FAIL) {
ret = -EIO;
} else {
for (i = 0; i <= SDRAM_TEST_GEN_MODE_MASK; ++i) {
writel((i << SDRAM_TEST_GEN_MODE_SHIFT) | test_params,
&regs->ecc_test_ctrl);
while (!(readl(&regs->ecc_test_ctrl) & SDRAM_TEST_DONE))
;
if (readl(&regs->ecc_test_ctrl) & SDRAM_TEST_FAIL) {
ret = -EIO;
break;
}
}
}
writel(0, &regs->refresh_timing);
writel(0, &regs->ecc_test_ctrl);
return ret;
}
static int ast2500_sdrammc_ddr4_calibrate_vref(struct dram_info *info)
{
int i;
int vref_min = 0xff;
int vref_max = 0;
int range_size = 0;
for (i = 1; i < 0x40; ++i) {
int res;
ast2500_sdrammc_set_vref(info, i);
res = ast2500_ddr_cbr_test(info);
if (res < 0) {
if (range_size > 0)
break;
} else {
++range_size;
vref_min = min(vref_min, i);
vref_max = max(vref_max, i);
}
}
/* Pick average setting */
ast2500_sdrammc_set_vref(info, (vref_min + vref_max + 1) / 2);
return 0;
}
static size_t ast2500_sdrammc_get_vga_mem_size(struct dram_info *info)
{
size_t vga_mem_size_base = 8 * 1024 * 1024;
u32 vga_hwconf = (readl(&info->scu->hwstrap)
>> SCU_HWSTRAP_VGAMEM_SHIFT)
& SCU_HWSTRAP_VGAMEM_MASK;
return vga_mem_size_base << vga_hwconf;
}
/*
* Find out RAM size and save it in dram_info
*
* The procedure is taken from Aspeed SDK
*/
static void ast2500_sdrammc_calc_size(struct dram_info *info)
{
/* The controller supports 128/256/512/1024 MB ram */
size_t ram_size = SDRAM_MIN_SIZE;
const int write_test_offset = 0x100000;
u32 test_pattern = 0xdeadbeef;
u32 cap_param = SDRAM_CONF_CAP_1024M;
u32 refresh_timing_param = DDR4_TRFC;
const u32 write_addr_base = CONFIG_SYS_SDRAM_BASE + write_test_offset;
for (ram_size = SDRAM_MAX_SIZE; ram_size > SDRAM_MIN_SIZE;
ram_size >>= 1) {
writel(test_pattern, write_addr_base + (ram_size >> 1));
test_pattern = (test_pattern >> 4) | (test_pattern << 28);
}
/* One last write to overwrite all wrapped values */
writel(test_pattern, write_addr_base);
/* Reset the pattern and see which value was really written */
test_pattern = 0xdeadbeef;
for (ram_size = SDRAM_MAX_SIZE; ram_size > SDRAM_MIN_SIZE;
ram_size >>= 1) {
if (readl(write_addr_base + (ram_size >> 1)) == test_pattern)
break;
--cap_param;
refresh_timing_param >>= 8;
test_pattern = (test_pattern >> 4) | (test_pattern << 28);
}
clrsetbits_le32(&info->regs->ac_timing[1],
(SDRAM_AC_TRFC_MASK << SDRAM_AC_TRFC_SHIFT),
((refresh_timing_param & SDRAM_AC_TRFC_MASK)
<< SDRAM_AC_TRFC_SHIFT));
info->info.base = CONFIG_SYS_SDRAM_BASE;
info->info.size = ram_size - ast2500_sdrammc_get_vga_mem_size(info);
clrsetbits_le32(&info->regs->config,
(SDRAM_CONF_CAP_MASK << SDRAM_CONF_CAP_SHIFT),
((cap_param & SDRAM_CONF_CAP_MASK)
<< SDRAM_CONF_CAP_SHIFT));
}
static int ast2500_sdrammc_init_ddr4(struct dram_info *info)
{
int i;
const u32 power_control = SDRAM_PCR_CKE_EN
| (1 << SDRAM_PCR_CKE_DELAY_SHIFT)
| (2 << SDRAM_PCR_TCKE_PW_SHIFT)
| SDRAM_PCR_RESETN_DIS
| SDRAM_PCR_RGAP_CTRL_EN | SDRAM_PCR_ODT_EN | SDRAM_PCR_ODT_EXT_EN;
const u32 conf = (SDRAM_CONF_CAP_1024M << SDRAM_CONF_CAP_SHIFT)
#ifdef CONFIG_DUALX8_RAM
| SDRAM_CONF_DUALX8
#endif
| SDRAM_CONF_SCRAMBLE | SDRAM_CONF_SCRAMBLE_PAT2 | SDRAM_CONF_DDR4;
int ret;
writel(conf, &info->regs->config);
for (i = 0; i < ARRAY_SIZE(ddr4_ac_timing); ++i)
writel(ddr4_ac_timing[i], &info->regs->ac_timing[i]);
writel(DDR4_MR46_MODE, &info->regs->mr46_mode_setting);
writel(DDR4_MR5_MODE, &info->regs->mr5_mode_setting);
writel(DDR4_MR02_MODE, &info->regs->mr02_mode_setting);
writel(DDR4_MR13_MODE, &info->regs->mr13_mode_setting);
for (i = 0; i < PHY_CFG_SIZE; ++i) {
writel(ddr4_phy_config.value[i],
&info->phy->phy[ddr4_phy_config.index[i]]);
}
writel(power_control, &info->regs->power_control);
ast2500_ddr_phy_init_process(info);
ret = ast2500_sdrammc_ddr4_calibrate_vref(info);
if (ret < 0) {
debug("Vref calibration failed!\n");
return ret;
}
writel((1 << SDRAM_REFRESH_CYCLES_SHIFT)
| SDRAM_REFRESH_ZQCS_EN | (0x2f << SDRAM_REFRESH_PERIOD_SHIFT),
&info->regs->refresh_timing);
setbits_le32(&info->regs->power_control,
SDRAM_PCR_AUTOPWRDN_EN | SDRAM_PCR_ODT_AUTO_ON);
ast2500_sdrammc_calc_size(info);
setbits_le32(&info->regs->config, SDRAM_CONF_CACHE_INIT_EN);
while (!(readl(&info->regs->config) & SDRAM_CONF_CACHE_INIT_DONE))
;
setbits_le32(&info->regs->config, SDRAM_CONF_CACHE_EN);
writel(SDRAM_MISC_DDR4_TREFRESH, &info->regs->misc_control);
/* Enable all requests except video & display */
writel(SDRAM_REQ_USB20_EHCI1
| SDRAM_REQ_USB20_EHCI2
| SDRAM_REQ_CPU
| SDRAM_REQ_AHB2
| SDRAM_REQ_AHB
| SDRAM_REQ_MAC0
| SDRAM_REQ_MAC1
| SDRAM_REQ_PCIE
| SDRAM_REQ_XDMA
| SDRAM_REQ_ENCRYPTION
| SDRAM_REQ_VIDEO_FLAG
| SDRAM_REQ_VIDEO_LOW_PRI_WRITE
| SDRAM_REQ_2D_RW
| SDRAM_REQ_MEMCHECK, &info->regs->req_limit_mask);
return 0;
}
static void ast2500_sdrammc_unlock(struct dram_info *info)
{
writel(SDRAM_UNLOCK_KEY, &info->regs->protection_key);
while (!readl(&info->regs->protection_key))
;
}
static void ast2500_sdrammc_lock(struct dram_info *info)
{
writel(~SDRAM_UNLOCK_KEY, &info->regs->protection_key);
while (readl(&info->regs->protection_key))
;
}
static int ast2500_sdrammc_probe(struct udevice *dev)
{
struct dram_info *priv = (struct dram_info *)dev_get_priv(dev);
struct ast2500_sdrammc_regs *regs = priv->regs;
int i;
int ret = clk_get_by_index(dev, 0, &priv->ddr_clk);
if (ret) {
debug("DDR:No CLK\n");
return ret;
}
priv->scu = ast_get_scu();
if (IS_ERR(priv->scu)) {
debug("%s(): can't get SCU\n", __func__);
return PTR_ERR(priv->scu);
}
clk_set_rate(&priv->ddr_clk, priv->clock_rate);
ret = ast_wdt_reset_masked(ast_get_wdt(0), WDT_RESET_SDRAM);
if (ret) {
debug("%s(): SDRAM reset failed\n", __func__);
return ret;
}
ast2500_sdrammc_unlock(priv);
writel(SDRAM_PCR_MREQI_DIS | SDRAM_PCR_RESETN_DIS,
&regs->power_control);
writel(SDRAM_VIDEO_UNLOCK_KEY, &regs->gm_protection_key);
/* Mask all requests except CPU and AHB during PHY init */
writel(~(SDRAM_REQ_CPU | SDRAM_REQ_AHB), &regs->req_limit_mask);
for (i = 0; i < ARRAY_SIZE(ddr_max_grant_params); ++i)
writel(ddr_max_grant_params[i], &regs->max_grant_len[i]);
setbits_le32(&regs->intr_ctrl, SDRAM_ICR_RESET_ALL);
ast2500_sdrammc_init_phy(priv->phy);
if (readl(&priv->scu->hwstrap) & SCU_HWSTRAP_DDR4) {
ast2500_sdrammc_init_ddr4(priv);
} else {
debug("Unsupported DRAM3\n");
return -EINVAL;
}
clrbits_le32(&regs->intr_ctrl, SDRAM_ICR_RESET_ALL);
ast2500_sdrammc_lock(priv);
return 0;
}
static int ast2500_sdrammc_ofdata_to_platdata(struct udevice *dev)
{
struct dram_info *priv = dev_get_priv(dev);
struct regmap *map;
int ret;
ret = regmap_init_mem(dev, &map);
if (ret)
return ret;
priv->regs = regmap_get_range(map, 0);
priv->phy = regmap_get_range(map, 1);
priv->clock_rate = fdtdec_get_int(gd->fdt_blob, dev->of_offset,
"clock-frequency", 0);
if (!priv->clock_rate) {
debug("DDR Clock Rate not defined\n");
return -EINVAL;
}
return 0;
}
static int ast2500_sdrammc_get_info(struct udevice *dev, struct ram_info *info)
{
struct dram_info *priv = dev_get_priv(dev);
*info = priv->info;
return 0;
}
static struct ram_ops ast2500_sdrammc_ops = {
.get_info = ast2500_sdrammc_get_info,
};
static const struct udevice_id ast2500_sdrammc_ids[] = {
{ .compatible = "aspeed,ast2500-sdrammc" },
{ }
};
U_BOOT_DRIVER(sdrammc_ast2500) = {
.name = "aspeed_ast2500_sdrammc",
.id = UCLASS_RAM,
.of_match = ast2500_sdrammc_ids,
.ops = &ast2500_sdrammc_ops,
.ofdata_to_platdata = ast2500_sdrammc_ofdata_to_platdata,
.probe = ast2500_sdrammc_probe,
.priv_auto_alloc_size = sizeof(struct dram_info),
};

View File

@ -17,3 +17,5 @@ obj-$(CONFIG_CLK_UNIPHIER) += uniphier/
obj-$(CONFIG_CLK_EXYNOS) += exynos/
obj-$(CONFIG_CLK_AT91) += at91/
obj-$(CONFIG_CLK_BOSTON) += clk_boston.o
obj-$(CONFIG_ARCH_ASPEED) += aspeed/

View File

@ -0,0 +1,7 @@
#
# Copyright (c) 2016 Google, Inc
#
# SPDX-License-Identifier: GPL-2.0+
#
obj-$(CONFIG_ASPEED_AST2500) += clk_ast2500.o

View File

@ -0,0 +1,265 @@
/*
* (C) Copyright 2016 Google, Inc
*
* SPDX-License-Identifier: GPL-2.0
*/
#include <common.h>
#include <clk-uclass.h>
#include <dm.h>
#include <asm/io.h>
#include <asm/arch/scu_ast2500.h>
#include <dm/lists.h>
#include <dt-bindings/clock/ast2500-scu.h>
DECLARE_GLOBAL_DATA_PTR;
/*
* For H-PLL and M-PLL the formula is
* (Output Frequency) = CLKIN * ((M + 1) / (N + 1)) / (P + 1)
* M - Numerator
* N - Denumerator
* P - Post Divider
* They have the same layout in their control register.
*/
/*
* Get the rate of the M-PLL clock from input clock frequency and
* the value of the M-PLL Parameter Register.
*/
static ulong ast2500_get_mpll_rate(ulong clkin, u32 mpll_reg)
{
const ulong num = (mpll_reg >> SCU_MPLL_NUM_SHIFT) & SCU_MPLL_NUM_MASK;
const ulong denum = (mpll_reg >> SCU_MPLL_DENUM_SHIFT)
& SCU_MPLL_DENUM_MASK;
const ulong post_div = (mpll_reg >> SCU_MPLL_POST_SHIFT)
& SCU_MPLL_POST_MASK;
return (clkin * ((num + 1) / (denum + 1))) / post_div;
}
/*
* Get the rate of the H-PLL clock from input clock frequency and
* the value of the H-PLL Parameter Register.
*/
static ulong ast2500_get_hpll_rate(ulong clkin, u32 hpll_reg)
{
const ulong num = (hpll_reg >> SCU_HPLL_NUM_SHIFT) & SCU_HPLL_NUM_MASK;
const ulong denum = (hpll_reg >> SCU_HPLL_DENUM_SHIFT)
& SCU_HPLL_DENUM_MASK;
const ulong post_div = (hpll_reg >> SCU_HPLL_POST_SHIFT)
& SCU_HPLL_POST_MASK;
return (clkin * ((num + 1) / (denum + 1))) / post_div;
}
static ulong ast2500_get_clkin(struct ast2500_scu *scu)
{
return readl(&scu->hwstrap) & SCU_HWSTRAP_CLKIN_25MHZ
? 25 * 1000 * 1000 : 24 * 1000 * 1000;
}
/**
* Get current rate or uart clock
*
* @scu SCU registers
* @uart_index UART index, 1-5
*
* @return current setting for uart clock rate
*/
static ulong ast2500_get_uart_clk_rate(struct ast2500_scu *scu, int uart_index)
{
/*
* ast2500 datasheet is very confusing when it comes to UART clocks,
* especially when CLKIN = 25 MHz. The settings are in
* different registers and it is unclear how they interact.
*
* This has only been tested with default settings and CLKIN = 24 MHz.
*/
ulong uart_clkin;
if (readl(&scu->misc_ctrl2) &
(1 << (uart_index - 1 + SCU_MISC2_UARTCLK_SHIFT)))
uart_clkin = 192 * 1000 * 1000;
else
uart_clkin = 24 * 1000 * 1000;
if (readl(&scu->misc_ctrl1) & SCU_MISC_UARTCLK_DIV13)
uart_clkin /= 13;
return uart_clkin;
}
static ulong ast2500_clk_get_rate(struct clk *clk)
{
struct ast2500_clk_priv *priv = dev_get_priv(clk->dev);
ulong clkin = ast2500_get_clkin(priv->scu);
ulong rate;
switch (clk->id) {
case PLL_HPLL:
case ARMCLK:
/*
* This ignores dynamic/static slowdown of ARMCLK and may
* be inaccurate.
*/
rate = ast2500_get_hpll_rate(clkin,
readl(&priv->scu->h_pll_param));
break;
case MCLK_DDR:
rate = ast2500_get_mpll_rate(clkin,
readl(&priv->scu->m_pll_param));
break;
case PCLK_UART1:
rate = ast2500_get_uart_clk_rate(priv->scu, 1);
break;
case PCLK_UART2:
rate = ast2500_get_uart_clk_rate(priv->scu, 2);
break;
case PCLK_UART3:
rate = ast2500_get_uart_clk_rate(priv->scu, 3);
break;
case PCLK_UART4:
rate = ast2500_get_uart_clk_rate(priv->scu, 4);
break;
case PCLK_UART5:
rate = ast2500_get_uart_clk_rate(priv->scu, 5);
break;
default:
return -ENOENT;
}
return rate;
}
static void ast2500_scu_unlock(struct ast2500_scu *scu)
{
writel(SCU_UNLOCK_VALUE, &scu->protection_key);
while (!readl(&scu->protection_key))
;
}
static void ast2500_scu_lock(struct ast2500_scu *scu)
{
writel(~SCU_UNLOCK_VALUE, &scu->protection_key);
while (readl(&scu->protection_key))
;
}
static ulong ast2500_configure_ddr(struct ast2500_scu *scu, ulong rate)
{
ulong clkin = ast2500_get_clkin(scu);
u32 mpll_reg;
/*
* There are not that many combinations of numerator, denumerator
* and post divider, so just brute force the best combination.
* However, to avoid overflow when multiplying, use kHz.
*/
const ulong clkin_khz = clkin / 1000;
const ulong rate_khz = rate / 1000;
ulong best_num = 0;
ulong best_denum = 0;
ulong best_post = 0;
ulong delta = rate;
ulong num, denum, post;
for (denum = 0; denum <= SCU_MPLL_DENUM_MASK; ++denum) {
for (post = 0; post <= SCU_MPLL_POST_MASK; ++post) {
num = (rate_khz * (post + 1) / clkin_khz) * (denum + 1);
ulong new_rate_khz = (clkin_khz
* ((num + 1) / (denum + 1)))
/ (post + 1);
/* Keep the rate below requested one. */
if (new_rate_khz > rate_khz)
continue;
if (new_rate_khz - rate_khz < delta) {
delta = new_rate_khz - rate_khz;
best_num = num;
best_denum = denum;
best_post = post;
if (delta == 0)
goto rate_calc_done;
}
}
}
rate_calc_done:
mpll_reg = readl(&scu->m_pll_param);
mpll_reg &= ~((SCU_MPLL_POST_MASK << SCU_MPLL_POST_SHIFT)
| (SCU_MPLL_NUM_MASK << SCU_MPLL_NUM_SHIFT)
| (SCU_MPLL_DENUM_MASK << SCU_MPLL_DENUM_SHIFT));
mpll_reg |= (best_post << SCU_MPLL_POST_SHIFT)
| (best_num << SCU_MPLL_NUM_SHIFT)
| (best_denum << SCU_MPLL_DENUM_SHIFT);
ast2500_scu_unlock(scu);
writel(mpll_reg, &scu->m_pll_param);
ast2500_scu_lock(scu);
return ast2500_get_mpll_rate(clkin, mpll_reg);
}
static ulong ast2500_clk_set_rate(struct clk *clk, ulong rate)
{
struct ast2500_clk_priv *priv = dev_get_priv(clk->dev);
ulong new_rate;
switch (clk->id) {
case PLL_MPLL:
case MCLK_DDR:
new_rate = ast2500_configure_ddr(priv->scu, rate);
break;
default:
return -ENOENT;
}
return new_rate;
}
struct clk_ops ast2500_clk_ops = {
.get_rate = ast2500_clk_get_rate,
.set_rate = ast2500_clk_set_rate,
};
static int ast2500_clk_probe(struct udevice *dev)
{
struct ast2500_clk_priv *priv = dev_get_priv(dev);
priv->scu = dev_get_addr_ptr(dev);
if (IS_ERR(priv->scu))
return PTR_ERR(priv->scu);
return 0;
}
static int ast2500_clk_bind(struct udevice *dev)
{
int ret;
/* The reset driver does not have a device node, so bind it here */
ret = device_bind_driver(gd->dm_root, "ast_sysreset", "reset", &dev);
if (ret)
debug("Warning: No reset driver: ret=%d\n", ret);
return 0;
}
static const struct udevice_id ast2500_clk_ids[] = {
{ .compatible = "aspeed,ast2500-scu" },
{ }
};
U_BOOT_DRIVER(aspeed_ast2500_scu) = {
.name = "aspeed_ast2500_scu",
.id = UCLASS_CLK,
.of_match = ast2500_clk_ids,
.priv_auto_alloc_size = sizeof(struct ast2500_clk_priv),
.ops = &ast2500_clk_ops,
.bind = ast2500_clk_bind,
.probe = ast2500_clk_probe,
};

View File

@ -0,0 +1,29 @@
/*
* Copyright 2016 Google Inc.
*
* SPDX-License-Identifier: GPL-2.0+
*/
/* Core Clocks */
#define PLL_HPLL 1
#define PLL_DPLL 2
#define PLL_D2PLL 3
#define PLL_MPLL 4
#define ARMCLK 5
/* Bus Clocks, derived from core clocks */
#define BCLK_PCLK 101
#define BCLK_LHCLK 102
#define BCLK_MACCLK 103
#define BCLK_SDCLK 104
#define BCLK_ARMCLK 105
#define MCLK_DDR 201
/* Special clocks */
#define PCLK_UART1 501
#define PCLK_UART2 502
#define PCLK_UART3 503
#define PCLK_UART4 504
#define PCLK_UART5 505